Abstract
In the quantitative structure-activity relationship (QSAR) study, local lazy regression (LLR) can predict the activity of a query molecule by using the information of its local neighborhood without need to produce QSAR models a priori. When a prediction is required for a query compound, a set of local models including different number of nearest neighbors are identified. The leave-one-out cross-validation (LOO-CV) procedure is usually used to assess the prediction ability of each model, and the model giving the lowest LOO-CV error or highest LOO-CV correlation coefficient is chosen as the best model. However, it has been proved that the good statistical value from LOO cross-validation appears to be the necessary, but not the sufficient condition for the model to have a high predictive power. In this work, a new strategy is proposed to improve the predictive ability of LLR models and to access the accuracy of a query prediction. The bandwidth of k neighbor value for LLR is optimized by considering the predictive ability of local models using an external validation set. This approach was applied to the QSAR study of a series of thienopyrimidinone antagonists of melanin-concentrating hormone receptor 1. The obtained results from the new strategy shows evident improvement compared with the commonly used LOO-CV LLR methods and the traditional global linear model.
| Original language | English |
|---|---|
| Pages (from-to) | 973-985 |
| Number of pages | 13 |
| Journal | Journal of Computational Chemistry |
| Volume | 31 |
| Issue number | 5 |
| DOIs | |
| Publication status | Published - 15 Apr 2010 |
| Externally published | Yes |
Keywords
- Local lazy regression
- Melanin-concentrating hormone receptor
- Multiple linear regression