TY - JOUR
T1 - Assessment of QM/MM scoring functions for molecular docking to HIV-1 protease
AU - Fong, Pedro
AU - McNamara, Jonathan P.
AU - Hillier, Ian H.
AU - Bryce, Richard A.
PY - 2009/4/27
Y1 - 2009/4/27
N2 - We explore the ability of four quantum mechanical (QM)/molecular mechanical (MM) models to accurately identify the native pose of six HIV-1 protease inhibitors and compare them with the AMBER force field and ChemScore and GoldScore scoring functions. Three QM/MM scoring functions treated the ligand at the HF/6-31G*, AM1d, and PM3 levels; the fourth QM/MM function modeled the ligand and active site at the PM3-D level. For the discrimination of native from non-native poses, solvent-corrected HF/6-31G*: AMBER and AMBER functions exhibited the best overall performance. While the electrostatic component of the MM and QM/MM functions appears important for discriminating the native pose of the ligand, the polarization contribution in the QM/MM functions was relatively insensitive to a ligand's binding mode and, for one ligand, actually hindered discrimination. The inclusion of a desolvation penalty, here using a generalized Born solvent model, improved discrimination for the MM and QM/MM methods. There appeared to be no advantage to binding mode prediction by incorporating active site polarization at the PM3-D level. Finally, we found that choice of the protonation state of the aspartyl dyad in the HIV-1 protease active site influenced the ability of scoring methods to determine the native binding pose.
AB - We explore the ability of four quantum mechanical (QM)/molecular mechanical (MM) models to accurately identify the native pose of six HIV-1 protease inhibitors and compare them with the AMBER force field and ChemScore and GoldScore scoring functions. Three QM/MM scoring functions treated the ligand at the HF/6-31G*, AM1d, and PM3 levels; the fourth QM/MM function modeled the ligand and active site at the PM3-D level. For the discrimination of native from non-native poses, solvent-corrected HF/6-31G*: AMBER and AMBER functions exhibited the best overall performance. While the electrostatic component of the MM and QM/MM functions appears important for discriminating the native pose of the ligand, the polarization contribution in the QM/MM functions was relatively insensitive to a ligand's binding mode and, for one ligand, actually hindered discrimination. The inclusion of a desolvation penalty, here using a generalized Born solvent model, improved discrimination for the MM and QM/MM methods. There appeared to be no advantage to binding mode prediction by incorporating active site polarization at the PM3-D level. Finally, we found that choice of the protonation state of the aspartyl dyad in the HIV-1 protease active site influenced the ability of scoring methods to determine the native binding pose.
UR - http://www.scopus.com/inward/record.url?scp=66149144253&partnerID=8YFLogxK
U2 - 10.1021/ci800432s
DO - 10.1021/ci800432s
M3 - Article
C2 - 19309119
AN - SCOPUS:66149144253
SN - 1549-9596
VL - 49
SP - 913
EP - 924
JO - Journal of Chemical Information and Modeling
JF - Journal of Chemical Information and Modeling
IS - 4
ER -