Automatic detection of breast lesions in automated 3D breast ultrasound with cross-organ transfer learning

B. A.O. Lingyun, Zhengrui HUANG, Zehui LIN, Yue SUN, Hui CHEN, You LI, Zhang LI, Xiaochen YUAN, Lin XU, Tao TAN

Research output: Contribution to journalArticlepeer-review

Abstract

Background: Deep convolutional neural networks have garnered considerable attention in numerous machine learning applications, particularly in visual recognition tasks such as image and video analyses. There is a growing interest in applying this technology to diverse applications in medical image analysis. Automated three-dimensional Breast Ultrasound is a vital tool for detecting breast cancer, and computer-assisted diagnosis software, developed based on deep learning, can effectively assist radiologists in diagnosis. However, the network model is prone to overfitting during training, owing to challenges such as insufficient training data. This study attempts to solve the problem caused by small datasets and improve model detection performance. Methods: We propose a breast cancer detection framework based on deep learning (a transfer learning method based on cross-organ cancer detection) and a contrastive learning method based on breast imaging reporting and data systems (BI-RADS). Results: When using cross organ transfer learning and BIRADS based contrastive learning, the average sensitivity of the model increased by a maximum of 16.05%. Conclusion: Our experiments have demonstrated that the parameters and experiences of cross-organ cancer detection can be mutually referenced, and contrastive learning method based on BI-RADS can improve the detection performance of the model.

Original languageEnglish
Pages (from-to)239-251
Number of pages13
JournalVirtual Reality and Intelligent Hardware
Volume6
Issue number3
DOIs
Publication statusPublished - Jun 2024

Keywords

  • Automated 3D breast ultrasound
  • Breast cancers
  • Breast ultrasound
  • Computer-aided diagnosis
  • Convolutional neural networks
  • Cross organ learning
  • Deep learning
  • Transfer learning

Fingerprint

Dive into the research topics of 'Automatic detection of breast lesions in automated 3D breast ultrasound with cross-organ transfer learning'. Together they form a unique fingerprint.

Cite this