Biological Evaluation of 8-Methoxy-2,5-dimethyl-5H-indolo[2,3-b] Quinoline as a Potential Antitumor Agent via PI3K/AKT/mTOR Signaling

Yunhao Ma, Hongmei Zhu, Xinrong Jiang, Zhongkun Zhou, Yong Zhou, Yanan Tian, Hao Zhang, Mengze Sun, Lixue Tu, Juan Lu, Yuqing Niu, Huanxiang Liu, Yingqian Liu, Peng Chen

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Chemotherapy is commonly used clinically to treat colorectal cancer, but it is usually prone to drug resistance, so novel drugs need to be developed continuously to treat colorectal cancer. Neocryptolepine derivatives have attracted a lot of attention because of their good cytotoxic activity; however, cytotoxicity studies on colorectal cancer cells are scarce. In this study, the cytotoxicity of 8-methoxy-2,5-dimethyl-5H-indolo[2,3-b] quinoline (MMNC) in colorectal cells was evaluated. The results showed that MMNC inhibits the proliferation of HCT116 and Caco-2 cells, blocks the cell cycle in the G2/M phase, decreases the cell mitochondrial membrane potential and induces apoptosis. In addition, the results of western blot experiments suggest that MMNC exerts cytotoxicity by inhibiting the expression of PI3K/AKT/mTOR signaling pathway-related proteins. Based on these results, MMNC is a promising lead compound for anticancer activity in the treatment of human colorectal cancer.

Original languageEnglish
Article number15142
JournalInternational Journal of Molecular Sciences
Volume24
Issue number20
DOIs
Publication statusPublished - Oct 2023

Keywords

  • PI3K/AKT/mTOR
  • antiproliferative activity
  • apoptosis
  • colorectal cancer
  • neocryptolepine derivatives

Fingerprint

Dive into the research topics of 'Biological Evaluation of 8-Methoxy-2,5-dimethyl-5H-indolo[2,3-b] Quinoline as a Potential Antitumor Agent via PI3K/AKT/mTOR Signaling'. Together they form a unique fingerprint.

Cite this