Combined Multiple Machine Learning Performance Measure

Research output: Contribution to journalArticlepeer-review

Abstract

The combined multiple machine learning performance measure (CMMLPM) offers a groundbreaking framework for evaluating machine learning (ML) systems by integrating multiple performance metrics into a single comprehensive measure. Traditional evaluation methods often treat performance metrics in isolation, complicating the assessment process when conflicting performance measures arise. CMMLPM effectively addresses this challenge by providing a unified metric that facilitates easier comparison and optimization of ML models across diverse applications. Through rigorous analysis and case studies, the robustness of CMMLPM in real-world scenarios has been demonstrated including credit card fraud detection and biometric authentication systems. Our findings reveal that CMMLPM not only streamlines the evaluation process but also enhances decision-making for selecting the most effective ML models. This innovative approach not only advances the field of performance measurement in ML but also sets the stage for future research to refine performance evaluation frameworks, ensuring they remain relevant in the increasingly complex landscape of ML applications.

Original languageEnglish
Article number2526606
JournalIEEE Transactions on Instrumentation and Measurement
Volume74
DOIs
Publication statusPublished - 2025

Keywords

  • Decision support system
  • machine learning (ML)
  • multivariable
  • performance evaluation
  • performance measure

Fingerprint

Dive into the research topics of 'Combined Multiple Machine Learning Performance Measure'. Together they form a unique fingerprint.

Cite this