Combining Pose Invariant and Discriminative Features for Vehicle Reidentification

Hao Sheng, Kai Lv, Yang Liu, Wei Ke, Weifeng Lyu, Zhang Xiong, Wei Li

Research output: Contribution to journalArticlepeer-review

22 Citations (Scopus)


Vehicle reidentification, aiming at identifying vehicles across images, has drawn a lot of attention and has made significant achievements in recent years. However, vehicle reidentification remains a challenging task caused by severe appearance changes due to different orientations. In practice, the result of reidentification is greatly influenced by the pose of vehicles, and we call this influence as a pose barrier problem. One way to address the pose barrier problem is to train a feature representation that is invariant for various vehicle poses. To this end, we present pose robust features (PRFs) that contains two components: 1) pose-invariant features (PIFs) and 2) pose discriminative features (PDFs). On the one hand, PIF is the expert in exploring the overall characteristic of vehicles. When training PIF, we adopt an identity classifier as well as an orientation classifier. In addition, an adversarial loss is deployed in the PIF network. On the other hand, we design a PDF network, which has a similar architecture to the PIF network but can distinguish the difference between local details. The difference between PDF and PIF is that the network of training PDF does not apply the adversarial loss. Finally, by combining PIF and PDF, PRF has the advantages of the two features and can alleviate the influence of the pose barrier problem. Experiments are conducted on the VeRi-776 and VehicleID data sets. We show that PIF and PDF are complementary and that PRF produces competitive performance compared with state-of-the-art approaches.

Original languageEnglish
Article number9163159
Pages (from-to)3189-3200
Number of pages12
JournalIEEE Internet of Things Journal
Issue number5
Publication statusPublished - 1 Mar 2021


  • Adversarial learning
  • image representation
  • pose discriminative
  • pose invariant
  • vehicle reidentification


Dive into the research topics of 'Combining Pose Invariant and Discriminative Features for Vehicle Reidentification'. Together they form a unique fingerprint.

Cite this