Comprehensive deep learning-based framework for automatic organs-at-risk segmentation in head-and-neck and pelvis for MR-guided radiation therapy planning

Vanda Czipczer, Bernadett Kolozsvári, Borbála Deák-Karancsi, Marta E. Capala, Rachel A. Pearson, Emőke Borzási, Zsófia Együd, Szilvia Gaál, Gyöngyi Kelemen, Renáta Kószó, Viktor Paczona, Zoltán Végváry, Zsófia Karancsi, Ádám Kékesi, Edina Czunyi, Blanka H. Irmai, Nóra G. Keresnyei, Petra Nagypál, Renáta Czabány, Bence GyalaiBulcsú P. Tass, Balázs Cziria, Cristina Cozzini, Lloyd Estkowsky, Lehel Ferenczi, András Frontó, Ross Maxwell, István Megyeri, Michael Mian, Tao Tan, Jonathan Wyatt, Florian Wiesinger, Katalin Hideghéty, Hazel McCallum, Steven F. Petit, László Ruskó

Research output: Contribution to journalArticlepeer-review

Fingerprint

Dive into the research topics of 'Comprehensive deep learning-based framework for automatic organs-at-risk segmentation in head-and-neck and pelvis for MR-guided radiation therapy planning'. Together they form a unique fingerprint.

Medicine and Dentistry

Computer Science

Engineering

Neuroscience

Biochemistry, Genetics and Molecular Biology