@inproceedings{39a578fc66124c3c831df15f5236d37f,
title = "Contrastive Learning via Randomly Generated Deep Supervision",
abstract = "Unsupervised visual representation learning has gained significant attention in the computer vision community, driven by recent advancements in contrastive learning. Most existing contrastive learning frameworks rely on instance discrimination as a pretext task, treating each instance as a distinct category. However, this often leads to intra-class collision in a large latent space, compromising the quality of learned representations. To address this issue, we propose a novel contrastive learning method that utilizes randomly generated supervision signals. Our framework incorporates two projection heads: one handles conventional classification tasks, while the other employs a random algorithm to generate fixed-length vectors representing different classes. The second head executes a supervised contrastive learning task based on these vectors, effectively clustering instances of the same class and increasing the separation between different classes. Our method, Contrastive Learning via Randomly Generated Supervision(CLRGS), significantly improves the quality of feature representations across various datasets and achieves state-of-the-art performance in contrastive learning tasks.",
keywords = "Class collision, Contrastive learning, Supervised contrastive learning",
author = "Shibo Wang and Zili Ma and Chan, {Ka Hou} and Yue Liu and Tong Tong and Qinquan Gao and Guangtao Zhai and Xiaohong Liu and Tao Tan",
note = "Publisher Copyright: {\textcopyright} 2025 IEEE.; 2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025 ; Conference date: 06-04-2025 Through 11-04-2025",
year = "2025",
doi = "10.1109/ICASSP49660.2025.10890867",
language = "English",
series = "ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
editor = "Rao, {Bhaskar D} and Isabel Trancoso and Gaurav Sharma and Mehta, {Neelesh B.}",
booktitle = "2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025 - Proceedings",
address = "United States",
}