Abstract
Segmentation of organs-at-risk (OAR) in MR images has several clinical applications; including radiation therapy (RT) planning. This paper presents a deep-learning-based method to segment 15 structures in the head region. The proposed method first applies 2D U-Net models to each of the three planes (axial, coronal, sagittal) to roughly segment the structure. Then, the results of the 2D models are combined into a fused prediction to localize the 3D bounding box of the structure. Finally, a 3D U-Net is applied to the volume of the bounding box to determine the precise contour of the structure. The model was trained on a public dataset and evaluated on both public and private datasets that contain T2-weighted MR scans of the head-and-neck region. For all cases the contour of each structure was defined by operators trained by expert clinical delineators. The evaluation demonstrated that various structures can be accurately and efficiently localized and segmented using the presented framework. The contours generated by the proposed method were also qualitatively evaluated. The majority (92%) of the segmented OARs was rated as clinically useful for radiation therapy.
Original language | English |
---|---|
Title of host publication | BIOIMAGING 2021 - 8th International Conference on Bioimaging; Part of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2021 |
Editors | Alexandre Douplik, Ana Fred, Hugo Gamboa |
Publisher | SciTePress |
Pages | 31-43 |
Number of pages | 13 |
ISBN (Electronic) | 9789897584909 |
Publication status | Published - 2021 |
Externally published | Yes |
Event | 8th International Conference on Bioimaging, BIOIMAGING 2021 - Part of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2021 - Virtual, Online Duration: 11 Feb 2021 → 13 Feb 2021 |
Publication series
Name | BIOIMAGING 2021 - 8th International Conference on Bioimaging; Part of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2021 |
---|
Conference
Conference | 8th International Conference on Bioimaging, BIOIMAGING 2021 - Part of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2021 |
---|---|
City | Virtual, Online |
Period | 11/02/21 → 13/02/21 |
Keywords
- Deep learning
- Head
- MRI
- Organ-at-risk
- Radiation therapy
- Segmentation
- U-net