TY - JOUR
T1 - Dietary selenomethionine reduced oxidative stress by resisting METTL3-mediated m6A methylation level of Nrf2 to ameliorate LPS-induced liver necroptosis in laying hens
AU - Li, Shanshan
AU - Wang, Yixuan
AU - Xu, Anqi
AU - Zhao, Bing
AU - Xia, Yu
AU - He, Yujiao
AU - Xue, Hua
AU - Li, Shu
N1 - Publisher Copyright:
© 2024 Elsevier Inc.
PY - 2024/3
Y1 - 2024/3
N2 - Selenomethionine (SeMet) as the main form of daily dietary selenium, occupies essential roles in providing antioxidant and anti-inflammatory properties, which alleviates inflammatory liver damage. N6-methyladenosine (m6A) is one of the most prevalent and abundant internal transcriptional modifications that regulate gene expression. To investigate the protective mechanism of SeMet on liver injury and the regulatory effect of m6A methylation modification, we established the model by supplementing dietary SeMet, and LPS as stimulus in laying hens. LMH cells were intervened with SeMet (0.075 µM) and/or LPS (60 µg/mL). Subsequently, histopathology and ultrastructure of liver were observed. Western Blot, qRT-PCR, colorimetry, MeRIP-qPCR, fluorescent probe staining and AO/EB were used to detect total m6A methylation level, m6A methylation level of Nrf2, ROS, inflammatory and necroptosis factors. Studies showed that SeMet suppressed LPS-induced upregulation of total m6A methylation levels and METTL3 expression. Interestingly, SeMet reduced the m6A methylation level of Nrf2, activated antioxidant pathways and alleviated oxidative stress. LMH cells were transfected with 50 µm siMETTL3. SeMet/SiMETTL3 reversed the LPS-induced reduction in Nrf2 mRNA stability, slowed down its degradation rate. Moreover, LPS induced oxidative stress, led to necroptosis and activated NF-κB to promote the expression of inflammatory factors. SeMet/SiMETTL3 alleviated LPS-induced necroptosis and inflammation. Altogether, SeMet enhanced antioxidant and anti-inflammatory capacity by reducing METTL3-mediated m6A methylation levels of Nrf2, ultimately alleviating liver damage. Our findings provided new insights and therapeutic target for the practical application of dietary SeMet in the treatment and prevention of liver inflammation, and supplied a reference for comparative medicine.
AB - Selenomethionine (SeMet) as the main form of daily dietary selenium, occupies essential roles in providing antioxidant and anti-inflammatory properties, which alleviates inflammatory liver damage. N6-methyladenosine (m6A) is one of the most prevalent and abundant internal transcriptional modifications that regulate gene expression. To investigate the protective mechanism of SeMet on liver injury and the regulatory effect of m6A methylation modification, we established the model by supplementing dietary SeMet, and LPS as stimulus in laying hens. LMH cells were intervened with SeMet (0.075 µM) and/or LPS (60 µg/mL). Subsequently, histopathology and ultrastructure of liver were observed. Western Blot, qRT-PCR, colorimetry, MeRIP-qPCR, fluorescent probe staining and AO/EB were used to detect total m6A methylation level, m6A methylation level of Nrf2, ROS, inflammatory and necroptosis factors. Studies showed that SeMet suppressed LPS-induced upregulation of total m6A methylation levels and METTL3 expression. Interestingly, SeMet reduced the m6A methylation level of Nrf2, activated antioxidant pathways and alleviated oxidative stress. LMH cells were transfected with 50 µm siMETTL3. SeMet/SiMETTL3 reversed the LPS-induced reduction in Nrf2 mRNA stability, slowed down its degradation rate. Moreover, LPS induced oxidative stress, led to necroptosis and activated NF-κB to promote the expression of inflammatory factors. SeMet/SiMETTL3 alleviated LPS-induced necroptosis and inflammation. Altogether, SeMet enhanced antioxidant and anti-inflammatory capacity by reducing METTL3-mediated m6A methylation levels of Nrf2, ultimately alleviating liver damage. Our findings provided new insights and therapeutic target for the practical application of dietary SeMet in the treatment and prevention of liver inflammation, and supplied a reference for comparative medicine.
KW - Inflammation
KW - MA methylation
KW - Necroptosis
KW - Nrf2
KW - Oxidative stress
KW - SeMet
UR - http://www.scopus.com/inward/record.url?scp=85182423135&partnerID=8YFLogxK
U2 - 10.1016/j.jnutbio.2023.109563
DO - 10.1016/j.jnutbio.2023.109563
M3 - Article
C2 - 38176622
AN - SCOPUS:85182423135
SN - 0955-2863
VL - 125
JO - Journal of Nutritional Biochemistry
JF - Journal of Nutritional Biochemistry
M1 - 109563
ER -