DpDNet: An Dual-Prompt-Driven Network for Universal PET-CT Segmentation

Xinglong Liang, Jiaju Huang, Luyi Han, Tianyu Zhang, Xin Wang, Yuan Gao, Chunyao Lu, Lishan Cai, Tao Tan, Ritse Mann

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

PET-CT lesion segmentation is challenging due to noise sensitivity, small and variable lesion morphology, and interference from physiological high-metabolic signals. Current mainstream approaches follow the practice of one network solving the segmentation of multiple cancer lesions by treating all cancers as a single task. However, this overlooks the unique characteristics of different cancer types. Considering the specificity and similarity of different cancers in terms of metastatic patterns, organ preferences, and FDG uptake intensity, we propose DpDNet, a Dual-Prompt-Driven network that incorporates specific prompts to capture cancer-specific features and common prompts to retain shared knowledge. Additionally, to mitigate information forgetting caused by the early introduction of prompts, prompt-aware heads are employed after the decoder to adaptively handle multiple segmentation tasks. Experiments on a PET-CT dataset with four cancer types show that DpDNet outperforms state-of-the-art models. Finally, based on the segmentation results, we calculated MTV, TLG, and SUVmax for breast cancer survival analysis. The results suggest that DpDNet has the potential to serve as a valuable tool for personalized risk stratification, supporting clinicians in optimizing treatment strategies and improving outcomes. Code is available at https://github.com/XinglongLiang08/DpDNet

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention, MICCAI 2025 - 28th International Conference, Proceedings
EditorsJames C. Gee, Jaesung Hong, Carole H. Sudre, Polina Golland, Daniel C. Alexander, Juan Eugenio Iglesias, Archana Venkataraman, Jong Hyo Kim
PublisherSpringer Science and Business Media Deutschland GmbH
Pages163-172
Number of pages10
ISBN (Print)9783032049773
DOIs
Publication statusPublished - 2026
Event28th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2025 - Daejeon, Korea, Republic of
Duration: 23 Sept 202527 Sept 2025

Publication series

NameLecture Notes in Computer Science
Volume15965 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference28th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2025
Country/TerritoryKorea, Republic of
CityDaejeon
Period23/09/2527/09/25

Keywords

  • Dual-Prompt
  • Survival analysis
  • Universal PET-CT Segmentation

Fingerprint

Dive into the research topics of 'DpDNet: An Dual-Prompt-Driven Network for Universal PET-CT Segmentation'. Together they form a unique fingerprint.

Cite this