Elucidating the Selective Mechanism of Drugs Targeting Cyclin-Dependent Kinases with Integrated MetaD-US Simulation

Lingling Wang, Shu Li, Sutong Xiang, Huanxiang Liu, Huiyong Sun

Research output: Contribution to journalArticlepeer-review

Abstract

Cyclin-dependent kinases (CDKs), including CDK12 and CDK13, play crucial roles in regulating the cell cycle and RNA polymerase II activity, making them vital targets for cancer therapies. SR4835 is a selective inhibitor of CDK12/13, showing significant potential for treating triple-negative breast cancer. To elucidate the selective mechanism of SR4835 among three CDKs (CDK13/12/9), we developed an innovative enhanced sampling method, integrated well-tempered metadynamics-umbrella sampling (IMUS). IMUS synergistically combines the comprehensive pathway exploration capability of well-tempered metadynamics (WT-MetaD) with the precise free energy calculation capability of umbrella sampling, enabling the efficient and accurate characterization of drug-target interactions. The accurate calculation of binding free energy and the detailed analysis of the kinetic mechanism of the drug-target interaction using IMUS successfully elucidate the drug selectivity mechanism targeting the three CDKs, showing that the selectivity is primarily arising from differences in the stability of H-bonds within the Hinge region of the kinases and the interaction patterns during the protein-ligand recognition process. These findings also underscore the utility of IMUS in efficiently and accurately capturing drug-target interaction processes with clear mechanisms.

Original languageEnglish
JournalJournal of Chemical Information and Modeling
DOIs
Publication statusAccepted/In press - 2024

Fingerprint

Dive into the research topics of 'Elucidating the Selective Mechanism of Drugs Targeting Cyclin-Dependent Kinases with Integrated MetaD-US Simulation'. Together they form a unique fingerprint.

Cite this