TY - JOUR
T1 - Exploring the molecular basis of dsRNA recognition by NS1 protein of influenza A virus using molecular dynamics simulation and free energy calculation
AU - Pan, Dabo
AU - Sun, Huijun
AU - Shen, Yulin
AU - Liu, Huanxiang
AU - Yao, Xiaojun
N1 - Funding Information:
This work was supported by the National Natural Science Foundation of China (Grant Nos.: 21103075 and 21175063) and the Fundamental Research Funds for the Central Universities (Grant No.: lzujbky-2011-t01). We would like to thank the Gansu Computing Center for providing the computing resources.
PY - 2011/12
Y1 - 2011/12
N2 - The frequent outbreak of influenza pandemic and the limited available anti-influenza drugs highlight the urgent need for the development of new antiviral drugs. The dsRNA-binding surface of nonstructural protein 1 of influenza A virus (NS1A) is a promising target. The detailed understanding of NS1A-dsRNA interaction will be valuable for structure-based anti-influenza drug discovery. To characterize and explore the key interaction features between dsRNA and NS1A, molecular dynamics simulation combined with MM-GBSA calculations were performed. Based on the MM-GBSA calculations, we find that the intermolecular van der Waals interaction and the nonpolar solvation term provide the main driving force for the binding process. Meanwhile, 17 key residues from NS1A were identified to be responsible for the dsRNA binding. Compared with the wild type NS1A, all the studied mutants S42A, T49A, R38A, R35AR46A have obvious reduced binding free energies with dsRNA reflecting in the reduction of the polar and/or nonpolar interactions. In addition, the structural and energy analysis indicate the mutations have a small effect to the backbone structures but the loss of side chain interactions is responsible for the decrease of the binding affinity. The uncovering of NS1A-dsRNA recognition mechanism will provide some useful insights and new chances for the development of anti-influenza drugs.
AB - The frequent outbreak of influenza pandemic and the limited available anti-influenza drugs highlight the urgent need for the development of new antiviral drugs. The dsRNA-binding surface of nonstructural protein 1 of influenza A virus (NS1A) is a promising target. The detailed understanding of NS1A-dsRNA interaction will be valuable for structure-based anti-influenza drug discovery. To characterize and explore the key interaction features between dsRNA and NS1A, molecular dynamics simulation combined with MM-GBSA calculations were performed. Based on the MM-GBSA calculations, we find that the intermolecular van der Waals interaction and the nonpolar solvation term provide the main driving force for the binding process. Meanwhile, 17 key residues from NS1A were identified to be responsible for the dsRNA binding. Compared with the wild type NS1A, all the studied mutants S42A, T49A, R38A, R35AR46A have obvious reduced binding free energies with dsRNA reflecting in the reduction of the polar and/or nonpolar interactions. In addition, the structural and energy analysis indicate the mutations have a small effect to the backbone structures but the loss of side chain interactions is responsible for the decrease of the binding affinity. The uncovering of NS1A-dsRNA recognition mechanism will provide some useful insights and new chances for the development of anti-influenza drugs.
KW - Influenza A virus
KW - Molecular dynamics simulation
KW - Molecular mechanics generalized born surface area (MM-GBSA)
KW - Nonstructural protein 1
KW - Protein-RNA interaction
UR - http://www.scopus.com/inward/record.url?scp=84862832804&partnerID=8YFLogxK
U2 - 10.1016/j.antiviral.2011.09.009
DO - 10.1016/j.antiviral.2011.09.009
M3 - Article
C2 - 22001595
AN - SCOPUS:84862832804
SN - 0166-3542
VL - 92
SP - 424
EP - 433
JO - Antiviral Research
JF - Antiviral Research
IS - 3
ER -