GeoMixer: The MLP-Based Sequential POI Recommender with Travel Routing Modelling

Tianxing Wang, Can Wang, Hui Tian, Hong Shen

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review


Nowadays, with the rise of location-based services, the personalized sequential POI recommendation has become a pivotal element for enhancing customer experiences. Although many previous POI recommendation models have shown promising results and improvements in this area, several challenges still exist in this field. Firstly, the previous sequential recommenders do not well-utilize the geographical features that are highly affecting the user's future choices of visits. Furthermore, the self-attention mechanism, which is a popular method used in sequential POI recommendation, has a limitation in treating the input user sequence as an unordered set. Using positional embedding is a typical way to overcome this limitation. However, the use of such embeddings may potentially restrict the model's ability to learn meaningful patterns in user preferences among POIs. To address these challenges, we propose GeoMixer, a novel MLP-based sequential POI recommender that incorporates travel routing distance to capture geographical features and leverages Multi-layer Perceptron (MLP) architecture to model the spatial and sequential patterns in the sequential POI recommendations. By adopting MLP mixing layers, GeoMixer has the capability of memorizing the chronological order of the input POIs without the positional embedding and can emphasize the important latent features of each POI. The use of the travel routing information improves the model's ability of capturing spatial patterns during the model learning process. Extensive experiments on real-world datasets show that GeoMixer outperforms state-of-theart methods in various metrics, highlighting the significance of incorporating travel routing distance and leveraging MLP architecture in sequential POI recommendation systems.

Original languageEnglish
Title of host publicationProceedings - 23rd IEEE International Conference on Data Mining, ICDM 2023
EditorsGuihai Chen, Latifur Khan, Xiaofeng Gao, Meikang Qiu, Witold Pedrycz, Xindong Wu
PublisherInstitute of Electrical and Electronics Engineers Inc.
Number of pages6
ISBN (Electronic)9798350307887
Publication statusPublished - 2023
Event23rd IEEE International Conference on Data Mining, ICDM 2023 - Shanghai, China
Duration: 1 Dec 20234 Dec 2023

Publication series

NameProceedings - IEEE International Conference on Data Mining, ICDM
ISSN (Print)1550-4786


Conference23rd IEEE International Conference on Data Mining, ICDM 2023


  • geographical information
  • POI recommendation
  • sequential recommendation
  • travel routing modelling


Dive into the research topics of 'GeoMixer: The MLP-Based Sequential POI Recommender with Travel Routing Modelling'. Together they form a unique fingerprint.

Cite this