HRGCNLDA: Forecasting of lncRNA-disease association based on hierarchical refinement graph convolutional neural network

Li Peng, Yujie Yang, Cheng Yang, Zejun Li, Ngai Cheong

Research output: Contribution to journalArticlepeer-review

Abstract

Long non-coding RNA (lncRNA) is considered to be a crucial regulator involved in various human biological processes, including the regulation of tumor immune checkpoint proteins. It has great potential as both a cancer biomolecular biomarker and therapeutic target. Nevertheless, conventional biological experimental techniques are both resource-intensive and laborious, making it essential to develop an accurate and efficient computational method to facilitate the discovery of potential links between lncRNAs and diseases. In this study, we proposed HRGCNLDA, a computational approach utilizing hierarchical refinement of graph convolutional neural networks for forecasting lncRNA-disease potential associations. This approach effectively addresses the over-smoothing problem that arises from stacking multiple layers of graph convolutional neural networks. Specifically, HRGCNLDA enhances the layer representation during message propagation and node updates, thereby amplifying the contribution of hidden layers that resemble the ego layer while reducing discrepancies. The results of the experiments showed that HRGCNLDA achieved the highest AUC-ROC (area under the receiver operating characteristic curve, AUC for short) and AUC-PR (area under the precision versus recall curve, AUPR for short) values compared to other methods. Finally, to further demonstrate the reliability and efficacy of our approach, we performed case studies on the case of three prevalent human diseases, namely, breast cancer, lung cancer and gastric cancer.

Original languageEnglish
Pages (from-to)4814-4834
Number of pages21
JournalMathematical Biosciences and Engineering
Volume21
Issue number4
DOIs
Publication statusPublished - 2024

Keywords

  • graph convolutional neural network
  • hierarchical refinement
  • lncRNA-disease associations prediction

Fingerprint

Dive into the research topics of 'HRGCNLDA: Forecasting of lncRNA-disease association based on hierarchical refinement graph convolutional neural network'. Together they form a unique fingerprint.

Cite this