Hybrid NOMA Empowered Integrated Sensing and Communications

Na Xue, Xidong Mu, Yuanwei Liu, Yue Liu, Yue Chen

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

A novel concept of hybrid non-orthogonal multiple access (HNOMA) empowered integrated sensing and communications (ISAC) is proposed, where the additional sensing-to-communication (S2C) interference can be mitigated via successive interference cancellation (SIC) in an adaptive manner. A transmit power minimization problem is formulated to jointly optimize the beamforming vectors and SIC options, subject to the dual functionality requirements. To address this non-convex mixed integer problem, we first investigate the ideal case where the additional S2C interference can be unconditionally eliminated. It reveals that the required number of dedicated sensing beams is no more than one. By exploring this insight, we propose a hybrid-NOMA ISAC (HNOMA-ISAC) scheme, where the binary SIC option of each CU is determined via the optimal solution of the ideal case. The remaining beamforming design problem is solved via semidefinite relaxation (SDR). Simulation results reveal that the proposed HNOMA-ISAC scheme achieves the identical sensing performance as the conventional ISAC scheme while maintaining much lower transmission energy consumption.

Original languageEnglish
Title of host publication2023 IEEE International Conference on Communications Workshops
Subtitle of host publicationSustainable Communications for Renaissance, ICC Workshops 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1648-1653
Number of pages6
ISBN (Electronic)9798350333077
DOIs
Publication statusPublished - 2023
Event2023 IEEE International Conference on Communications Workshops, ICC Workshops 2023 - Rome, Italy
Duration: 28 May 20231 Jun 2023

Publication series

Name2023 IEEE International Conference on Communications Workshops: Sustainable Communications for Renaissance, ICC Workshops 2023

Conference

Conference2023 IEEE International Conference on Communications Workshops, ICC Workshops 2023
Country/TerritoryItaly
CityRome
Period28/05/231/06/23

Fingerprint

Dive into the research topics of 'Hybrid NOMA Empowered Integrated Sensing and Communications'. Together they form a unique fingerprint.

Cite this