Identification of novel LRRK2 inhibitors by structure-based virtual screening and alchemical free energy calculation

Shuoyan Tan, Xiaoqing Gong, Huanxiang Liu, Xiaojun Yao

Research output: Contribution to journalArticlepeer-review

Abstract

The Leucine-rich repeat kinase 2 (LRRK2) target has been identified as a promising drug target for Parkinson's disease (PD) treatment. This study focuses on optimizing the activity of LRRK2 inhibitors using alchemical relative binding free energy (RBFE) calculations. Initially, we assessed various free energy calculation methods across different LRRK2 kinase inhibitor scaffolds. The results indicate that alchemical free energy calculations are promising for prospective predictions on LRRK2 inhibitors, especially for the aminopyrimidine scaffold with an RMSE of 1.15 kcal mol−1 and Rp of 0.83. Following this, we optimized a potent LRRK2 kinase inhibitor identified from previous virtual screenings, featuring a novel scaffold. Guided by RBFE predictions using alchemical methods, this optimization led to the discovery of compound LY2023-001. This compound, with a [1,2,4]triazolo[5,6-b]indole scaffold, exhibited enhanced inhibitory activity against G2019S LRRK2 (IC50 = 12.9 nM). Molecular dynamics (MD) simulations revealed that LY2023-001 formed stable hydrogen bonds with Glu1948, and Ala1950 in the G2019S LRRK2 protein. Additionally, its phenyl substituents engage in strong electrostatic interactions with Lys1906 and van der Waals interactions with Leu1885, Phe1890, Val1893, Ile1933, Met1947, Leu1949, Leu2001, Ala2016, and Asp2017. Our findings underscore the potential of computational methods in the successful optimization of small molecules, offering important insights for the development of novel LRRK2 inhibitors.

Original languageEnglish
Pages (from-to)19775-19786
Number of pages12
JournalPhysical Chemistry Chemical Physics
Volume26
Issue number29
DOIs
Publication statusPublished - 10 Jul 2024

Fingerprint

Dive into the research topics of 'Identification of novel LRRK2 inhibitors by structure-based virtual screening and alchemical free energy calculation'. Together they form a unique fingerprint.

Cite this