IMAN: An Adaptive Network for Robust NPC Mortality Prediction with Missing Modalities

Yejing Huo, Guoheng Huang, Lianglun Cheng, Jianbin He, Xuhang Chen, Xiaochen Yuan, Guo Zhong, Chi Man Pun

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Accurate prediction of mortality in nasopharyngeal carcinoma (NPC), a complex malignancy particularly challenging in advanced stages, is crucial for optimizing treatment strategies and improving patient outcomes. However, this predictive process is often compromised by the high-dimensional and heterogeneous nature of NPC-related data, coupled with the pervasive issue of incomplete multi-modal data, manifesting as missing radiological images or incomplete diagnostic reports. Traditional machine learning approaches suffer significant performance degradation when faced with such incomplete data, as they fail to effectively handle the high-dimensionality and intricate correlations across modalities. Even advanced multi-modal learning techniques like Transformers struggle to maintain robust performance in the presence of missing modalities, as they lack specialized mechanisms to adaptively integrate and align the diverse data types, while also capturing nuanced patterns and contextual relationships within the complex NPC data. To address these problem, we introduce IMAN: an adaptive network for robust NPC mortality prediction with missing modalities. IMAN features three integrated modules: the Dynamic Cross-Modal Calibration (DCMC) module employs adaptive, learnable parameters to scale and align medical images and field data; the Spatial-Contextual Attention Integration (SCAI) module enhances traditional Transformers by incorporating positional information within the self-attention mechanism, improving multi-modal feature integration; and the Context-Aware Feature Acquisition (CAFA) module adjusts convolution kernel positions through learnable offsets, allowing for adaptive feature capture across various scales and orientations in medical image modalities. Extensive experiments on our proprietary NPC dataset demonstrate IMAN's robustness and high predictive accuracy, even with missing data. Compared to existing methods, IMAN consistently outperforms in scenarios with incomplete data, representing a significant advancement in mortality prediction for medical diagnostics and treatment planning. Our code is available at https://github.com/king-huoye/BIBM-2024/tree/master.

Original languageEnglish
Title of host publicationProceedings - 2024 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2024
EditorsMario Cannataro, Huiru Zheng, Lin Gao, Jianlin Cheng, Joao Luis de Miranda, Ester Zumpano, Xiaohua Hu, Young-Rae Cho, Taesung Park
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2074-2079
Number of pages6
ISBN (Electronic)9798350386226
DOIs
Publication statusPublished - 2024
Event2024 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2024 - Lisbon, Portugal
Duration: 3 Dec 20246 Dec 2024

Publication series

NameProceedings - 2024 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2024

Conference

Conference2024 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2024
Country/TerritoryPortugal
CityLisbon
Period3/12/246/12/24

Keywords

  • Modality missing
  • Multi-modal
  • Nasopharyngeal Carcinoma

Fingerprint

Dive into the research topics of 'IMAN: An Adaptive Network for Robust NPC Mortality Prediction with Missing Modalities'. Together they form a unique fingerprint.

Cite this