IMPORTANT-Net: Integrated MRI multi-parametric increment fusion generator with attention network for synthesizing absent data

Tianyu Zhang, Tao Tan, Luyi Han, Xin Wang, Yuan Gao, Jarek van Dijk, Antonio Portaluri, Abel Gonzalez-Huete, Anna D'Angelo, Chunyao Lu, Jonas Teuwen, Regina Beets-Tan, Yue Sun, Ritse Mann

Research output: Contribution to journalArticlepeer-review

Abstract

Magnetic resonance imaging (MRI) is highly sensitive for lesion detection. Sequences obtained with different settings can capture specific characteristics of lesions. Such multi-parametric MRI information has been shown to aid radiologist performance in lesion classification, as well as improving the performance of artificial intelligence models in various tasks. However, obtaining multi-parametric MRI makes the examination costly from both financial and time perspectives, and there may also be safety concerns for special populations, thus making acquisition of the full spectrum of MRI sequences less durable. In this study, a sophisticated Integrated MRI Multi-Parametric increment fusiOn generatoR wiTh AtteNTion Network (IMPORTANT-Net) is developed to generate absent sequences/parameters. First, the parameter reconstruction module is used to encode and restore the existing MRI parameters to obtain the corresponding latent representation information at any scale level. Then the multi-parametric fusion with attention module enables the interaction of the encoded information from different parameters through a set of algorithmic strategies, and applies different weights to the information through the attention mechanism after information fusion to obtain refined representation information. Finally, a increment fusion scheme embedded in a V-shape generation module is used to combine the hierarchical representations to generate specified absent MRI parameter. Results showed that our IMPORTANT-Net is capable of synthesizing absent MRI, outperforms comparable state-of-the-art networks and more importantly benefit downstream tasks. The codes are available at https://github.com/Netherlands-Cancer-Institute/MRI_IMPORTANT_NET

Original languageEnglish
Article number102381
JournalInformation Fusion
Volume108
DOIs
Publication statusPublished - Aug 2024

Keywords

  • Deep learning
  • Image synthesis
  • Magnetic Resonance Imaging
  • Multi-parametric fusion

Fingerprint

Dive into the research topics of 'IMPORTANT-Net: Integrated MRI multi-parametric increment fusion generator with attention network for synthesizing absent data'. Together they form a unique fingerprint.

Cite this