Learning More in Vehicle Re-Identification: Joint Local Blur Transformation and Adversarial Network Optimization

Yanbing Chen, Wei Ke, Hao Sheng, Zhang Xiong

Research output: Contribution to journalArticlepeer-review


Vehicle re-identification (ReID) tasks are an important part of smart cities and are widely used in public security. It is extremely challenging because vehicles with different identities are generated from a uniform pipeline and cannot be distinguished based only on the subtle differences in their characteristics. To enhance the network’s ability to handle the diversity of samples in order to adapt to the changing external environment, we propose a novel data augmentation method to improve its performance. Our deep learning framework mainly consists of a local blur transformation and a transformation adversarial module. In particular, we first use a random selection algorithm to find a local region of interest in an image sample. Then, the parameter generator network, a lightweight convolutional neural network, is responsible for generating four weights and then as a basis to form a filter matrix for further blur transformations. Finally, an adversarial module is employed to ensure that as much noise information as possible is added to the image sample while preserving the structure of the training datasets. Furthermore, by updating the parameter generator network, the adversarial module can help produce more appropriate and harder training samples and lead to improving the framework’s performance. Extensive experiments on datasets, i.e., VeRi-776, VehicleID, and VERI-Wild, show that our method is superior to the state-of-the-art methods.

Original languageEnglish
Article number7467
JournalApplied Sciences (Switzerland)
Issue number15
Publication statusPublished - Aug 2022


  • adversarial module
  • convolutional neural network
  • filter matrix
  • local blur transformation
  • vehicle re-identification


Dive into the research topics of 'Learning More in Vehicle Re-Identification: Joint Local Blur Transformation and Adversarial Network Optimization'. Together they form a unique fingerprint.

Cite this