MedIQA: A Scalable Foundation Model for Prompt-Driven Medical Image Quality Assessment

Siyi Xun, Yue Sun, Jingkun Chen, Zitong Yu, Tong Tong, Xiaohong Liu, Mingxiang Wu, Tao Tan

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Rapid advances in medical imaging technology underscore the critical need for precise and automated image quality assessment (IQA) to ensure diagnostic accuracy. Existing medical IQA methods, however, struggle to generalize across diverse modalities and clinical scenarios. In response, we introduce MedIQA, the first comprehensive foundation model for medical IQA, designed to handle variability in image dimensions, modalities, anatomical regions, and types. We developed a large-scale multi-modality dataset with plentiful manually annotated quality scores to support this. Our model integrates a salient slice assessment module to focus on diagnostically relevant regions feature retrieval and employs an automatic prompt strategy that aligns upstream physical parameter pre-training with downstream expert annotation fine-tuning. Extensive experiments demonstrate that MedIQA significantly outperforms baselines in multiple downstream tasks, establishing a scalable framework for medical IQA and advancing diagnostic workflows and clinical decision-making. Our code is available at https://github.com/siyi-xun/MedIQA.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention, MICCAI 2025 - 28th International Conference, 2025, Proceedings
EditorsJames C. Gee, Jaesung Hong, Carole H. Sudre, Polina Golland, Jinah Park, Daniel C. Alexander, Juan Eugenio Iglesias, Archana Venkataraman, Jong Hyo Kim
PublisherSpringer Science and Business Media Deutschland GmbH
Pages339-349
Number of pages11
ISBN (Print)9783032051684
DOIs
Publication statusPublished - 2026
Event28th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2025 - Daejeon, Korea, Republic of
Duration: 23 Sept 202527 Sept 2025

Publication series

NameLecture Notes in Computer Science
Volume15972 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference28th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2025
Country/TerritoryKorea, Republic of
CityDaejeon
Period23/09/2527/09/25

Keywords

  • Foundation model
  • Medical image quality assessment
  • Prompt strategy
  • Upstream and downstream validation

Fingerprint

Dive into the research topics of 'MedIQA: A Scalable Foundation Model for Prompt-Driven Medical Image Quality Assessment'. Together they form a unique fingerprint.

Cite this