Metabolic features of chronic fatigue syndrome

Robert K. Naviaux, Jane C. Naviaux, Kefeng Li, A. Taylor Bright, William A. Alaynick, Lin Wang, Asha Baxter, Neil Nathan, Wayne Anderson, Eric Gordon

Research output: Contribution to journalArticlepeer-review

270 Citations (Scopus)

Abstract

More than 2 million people in the United States have myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). We performed targeted, broad-spectrum metabolomics to gain insights into the biology of CFS. We studied a total of 84 subjects using these methods. Forty-five subjects (n = 22 men and 23 women) met diagnostic criteria for ME/CFS by Institute of Medicine, Canadian, and Fukuda criteria. Thirty-nine subjects (n = 18 men and 21 women) were age- and sexmatched normal controls. Males with CFS were 53 (±2.8) y old (mean ± SEM; range, 21-67 y). Females were 52 (±2.5) y old (range, 20-67 y). The Karnofsky performance scores were 62 (±3.2) for males and 54 (±3.3) for females. We targeted 612 metabolites in plasma from 63 biochemical pathways by hydrophilic interaction liquid chromatography, electrospray ionization, and tandem mass spectrometry in a single-injection method. Patients with CFS showed abnormalities in 20 metabolic pathways. Eighty percent of the diagnostic metabolites were decreased, consistent with a hypometabolic syndrome. Pathway abnormalities included sphingolipid, phospholipid, purine, cholesterol, microbiome, pyrroline-5-carboxylate, riboflavin, branch chain amino acid, peroxisomal, and mitochondrial metabolism. Area under the receiver operator characteristic curve analysis showed diagnostic accuracies of 94% [95% confidence interval (CI), 84-100%] in males using eight metabolites and 96% (95% CI, 86-100%) in females using 13 metabolites. Our data show that despite the heterogeneity of factors leading to CFS, the cellular metabolic response in patients was homogeneous, statistically robust, and chemically similar to the evolutionarily conserved persistence response to environmental stress known as dauer.

Original languageEnglish
Pages (from-to)E5472-E5480
JournalProceedings of the National Academy of Sciences of the United States of America
Volume113
Issue number37
DOIs
Publication statusPublished - 13 Sept 2016
Externally publishedYes

Keywords

  • Cell danger response
  • Chronic fatigue syndrome
  • Dauer
  • Metabolomics
  • Mitochondria

Fingerprint

Dive into the research topics of 'Metabolic features of chronic fatigue syndrome'. Together they form a unique fingerprint.

Cite this