TY - JOUR
T1 - Molecular dynamics simulation and free energy calculation studies of the binding mechanism of allosteric inhibitors with p38α MAP kinase
AU - Yang, Ying
AU - Shen, Yulin
AU - Liu, Huanxiang
AU - Yao, Xiaojun
PY - 2011
Y1 - 2011
N2 - p38 MAP kinase is a promising target for anti-inflammatory treatment. The classical kinase inhibitors imatinib and sorafenib as well as BI-1 and BIRB-796 were reported to bind in the DFG-out form of human p38α, known as type II or allosteric kinase inhibitors. Although DFG-out conformation has attracted great interest in the design of type II kinase inhibitors, the structural requirements for binding and mechanism of stabilization of DFG-out conformation remain unclear. As allosteric inhibition is important to the selectivity of kinase inhibitor, herein the binding modes of imatinib, sorafenib, BI-1 and BIRB-796 to p38α were investigated by molecular dynamics simulation. Binding free energies were calculated by molecular mechanics/Poisson-Boltzmann surface area method. The predicted binding affinities can give a good explanation of the activity difference of the studied inhibitors. Furthermore, binding free energies decomposition analysis and further structural analysis indicate that the dominating effect of van der Waals interaction drives the binding process, and key residues, such as Lys53, Gly71, Leu75, Ile84, Thr106, Met109, Leu167, Asp168, and Phe169, play important roles by forming hydrogen bond, salt bridge, and hydrophobic interactions with the DFG-out conformation of p38α. Finally, we also conducted a detailed analysis of BI-1, imatinib, and sorafenib binding to p38α in comparison with BIRB-796 exploited for gaining potency as well as selectivity of p38 inhibitors. These results are expected to be useful for future rational design of novel type II p38 inhibitors.
AB - p38 MAP kinase is a promising target for anti-inflammatory treatment. The classical kinase inhibitors imatinib and sorafenib as well as BI-1 and BIRB-796 were reported to bind in the DFG-out form of human p38α, known as type II or allosteric kinase inhibitors. Although DFG-out conformation has attracted great interest in the design of type II kinase inhibitors, the structural requirements for binding and mechanism of stabilization of DFG-out conformation remain unclear. As allosteric inhibition is important to the selectivity of kinase inhibitor, herein the binding modes of imatinib, sorafenib, BI-1 and BIRB-796 to p38α were investigated by molecular dynamics simulation. Binding free energies were calculated by molecular mechanics/Poisson-Boltzmann surface area method. The predicted binding affinities can give a good explanation of the activity difference of the studied inhibitors. Furthermore, binding free energies decomposition analysis and further structural analysis indicate that the dominating effect of van der Waals interaction drives the binding process, and key residues, such as Lys53, Gly71, Leu75, Ile84, Thr106, Met109, Leu167, Asp168, and Phe169, play important roles by forming hydrogen bond, salt bridge, and hydrophobic interactions with the DFG-out conformation of p38α. Finally, we also conducted a detailed analysis of BI-1, imatinib, and sorafenib binding to p38α in comparison with BIRB-796 exploited for gaining potency as well as selectivity of p38 inhibitors. These results are expected to be useful for future rational design of novel type II p38 inhibitors.
UR - http://www.scopus.com/inward/record.url?scp=84555177612&partnerID=8YFLogxK
U2 - 10.1021/ci200159g
DO - 10.1021/ci200159g
M3 - Article
C2 - 22097958
AN - SCOPUS:84555177612
SN - 1549-9596
VL - 51
SP - 3235
EP - 3246
JO - Journal of Chemical Information and Modeling
JF - Journal of Chemical Information and Modeling
IS - 12
ER -