Abstract
Developing chemicals that inhibit checkpoint kinase 1 (Chk1) is a promising adjuvant therapeutic to improve the efficacy and selectivity of DNA-targeting agents. Reliable prediction of binding-free energy and binding affinity of Chk1 inhibitors can provide a guide for rational drug design. In this study, multiple docking strategies and Prime/Molecular Mechanics Generalized Born Surface Area (Prime/MM-GBSA) calculation were applied to predict the binding mode and free energy for a series of benzoisoquinolinones as Chk1 inhibitors. Reliable docking results were obtained using induced-fit docking and quantum mechanics/molecular mechanics (QM/MM) docking, which showed superior performance on both ligand binding pose and docking score accuracy to the rigid-receptor docking. Then, the Prime/MM-GBSA method based on the docking complex was used to predict the binding-free energy. The combined use of QM/MM docking and Prime/MM-GBSA method could give a high correlation between the predicted binding-free energy and experimentally determined pIC50. The molecular docking combined with Prime/MM-GBSA simulation can not only be used to rapidly and accurately predict the binding-free energy of novel Chk1 inhibitors but also provide a novel strategy for lead discovery and optimization targeting Chk1.
Original language | English |
---|---|
Pages (from-to) | 2800-2809 |
Number of pages | 10 |
Journal | Journal of Computational Chemistry |
Volume | 32 |
Issue number | 13 |
DOIs | |
Publication status | Published - Oct 2011 |
Externally published | Yes |
Keywords
- Prime/MM-GBSA
- QM/MM docking
- binding-free energy
- checkpoint kinase 1 inhibitors
- induced-fit docking