@inproceedings{b8527a74fc164990808de0baebaea21d,
title = "MPRE: Multi-perspective Patient Representation Extractor for Disease Prediction",
abstract = "Patient representation learning based on electronic health records (EHR) is a critical task for disease prediction. This task aims to effectively extract useful information on dynamic features. Although various existing works have achieved remarkable progress, the model performance can be further improved by fully extracting the trends, variations, and the correlation between the trends and variations in dynamic features. In addition, sparse visit records limit the performance of deep learning models. To address these issues, we propose the Multi-perspective Patient Representation Extractor (MPRE) for disease prediction. Specifically, we propose Frequency Transformation Module (FTM) to extract the trend and variation information of dynamic features in the time-frequency domain, which can enhance the feature representation. In the 2D Multi-Extraction Network (2D MEN), we form the 2D temporal tensor based on trend and variation. Then, the correlations between trend and variation are captured by the proposed dilated operation. Moreover, we propose the First-Order Difference Attention Mechanism (FODAM) to calculate the contributions of differences in adjacent variations to the disease diagnosis adaptively. To evaluate the performance of MPRE and baseline methods, we conduct extensive experiments on two real-world public datasets. The experiment results show that MPRE outperforms state-of-the-art baseline methods in terms of AUROC and AUPRC.",
keywords = "Disease Prediction, Patient Representation, Visit Records",
author = "Ziyue Yu and Jiayi Wang and Wuman Luo and Rita Tse and Giovanni Pau",
note = "Publisher Copyright: {\textcopyright} 2023 IEEE.; 23rd IEEE International Conference on Data Mining, ICDM 2023 ; Conference date: 01-12-2023 Through 04-12-2023",
year = "2023",
doi = "10.1109/ICDM58522.2023.00085",
language = "English",
series = "Proceedings - IEEE International Conference on Data Mining, ICDM",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "758--767",
editor = "Guihai Chen and Latifur Khan and Xiaofeng Gao and Meikang Qiu and Witold Pedrycz and Xindong Wu",
booktitle = "Proceedings - 23rd IEEE International Conference on Data Mining, ICDM 2023",
address = "United States",
}