TY - JOUR
T1 - Pancreatic lipase immobilization on cellulose filter paper for inhibitors screening and network pharmacology study of anti-obesity mechanism
AU - Chen, Guangxuan
AU - Yuan, Huicong
AU - Zhang, Lumei
AU - Zhang, Jingran
AU - Li, Kefeng
AU - Wang, Xu
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2024/12/1
Y1 - 2024/12/1
N2 - The discovery of pancreatic lipase (PL) inhibitors is an essential route to develop new anti-obesity drugs. In this experiment, chitosan was used to add amino groups to cellulose filter paper (CFP) and then glutaraldehyde was used to covalently combine PL with amino-modified CFP through the Schiff base reaction. Under optimal immobilization conditions, CFP immobilized PL has a wide range of pH and temperature tolerance, as well as excellent reproducibility, reusability and storage stability. Subsequently, 26 natural products (NPs) were screened by immobilized PL with black tea extract having the highest inhibition rate. Three compounds with binding effects on PL (epigallocatechin gallate, theaflavin-3-gallate and theaflavin-3,3′-digallate) were captured. Molecular docking proved that these three compounds have a strong binding affinity for PL. Fluorescence spectra further revealed that theaflavin-3,3′-digallate could statically quench the intrinsic fluorescence of pancreatic lipase. The molecular docking and thermodynamic parameters indicated that electrostatic interaction was considered as the main interaction force between PL and theaflavin-3,3′-digallate. Finally, the potential anti-obesity targets and pathways of the three compounds were discussed through network pharmacology. This study not only proposes a simple and efficient method for screening PL inhibitors, but also sheds light on the anti-obesity mechanism of active compounds in black tea.
AB - The discovery of pancreatic lipase (PL) inhibitors is an essential route to develop new anti-obesity drugs. In this experiment, chitosan was used to add amino groups to cellulose filter paper (CFP) and then glutaraldehyde was used to covalently combine PL with amino-modified CFP through the Schiff base reaction. Under optimal immobilization conditions, CFP immobilized PL has a wide range of pH and temperature tolerance, as well as excellent reproducibility, reusability and storage stability. Subsequently, 26 natural products (NPs) were screened by immobilized PL with black tea extract having the highest inhibition rate. Three compounds with binding effects on PL (epigallocatechin gallate, theaflavin-3-gallate and theaflavin-3,3′-digallate) were captured. Molecular docking proved that these three compounds have a strong binding affinity for PL. Fluorescence spectra further revealed that theaflavin-3,3′-digallate could statically quench the intrinsic fluorescence of pancreatic lipase. The molecular docking and thermodynamic parameters indicated that electrostatic interaction was considered as the main interaction force between PL and theaflavin-3,3′-digallate. Finally, the potential anti-obesity targets and pathways of the three compounds were discussed through network pharmacology. This study not only proposes a simple and efficient method for screening PL inhibitors, but also sheds light on the anti-obesity mechanism of active compounds in black tea.
KW - Black tea
KW - Immobilized enzyme
KW - Inhibitor screening
KW - Natural products
KW - Network pharmacology
KW - Pancreatic lipase
UR - http://www.scopus.com/inward/record.url?scp=85202300337&partnerID=8YFLogxK
U2 - 10.1016/j.talanta.2024.126750
DO - 10.1016/j.talanta.2024.126750
M3 - Article
AN - SCOPUS:85202300337
SN - 0039-9140
VL - 280
JO - Talanta
JF - Talanta
M1 - 126750
ER -