TY - JOUR
T1 - Privacy-preserving tuple matching in distributed databases
AU - Sang, Yingpeng
AU - Shen, Hong
AU - Tian, Hui
N1 - Funding Information:
Special thanks are given to Yasuo Tan of Japan Advanced Institute of Science and Technology for his suggestions on the experiments, and to anonymous reviewers for their constructive comments and suggestions. This work is partially supported by Australian Research Council Discovery Project grant #DP0985063, and the corresponding author was Hong Shen.
PY - 2009/12
Y1 - 2009/12
N2 - We address the problems of Privacy-Preserving Duplicate Tuple Matching (PPDTM) and Privacy-Preserving Threshold Attributes Matching (PPTAM) in the scenario of a horizontally partitioned database among N parties, where each party holds a private share of the database's tuples and all tuples have the same set of attributes. In PPDTM, each party determines whether its tuples have any duplicate on other parties' private databases. In PPTAM, each party determines whether all attribute values of each tuple appear at least a threshold number of times in the attribute unions. We propose protocols for the two problems using additive homomorphic cryptosystem based on the subgroup membership assumption, e.g., Paillier's and ElGamal's schemes. By analysis on the total numbers of modular exponentiations, modular multiplications and communication bits, with a reduced computation cost which dominates the total cost, by trading off communication cost, our PPDTM protocol for the semihonest model is superior to the solution derivable from existing techniques in total cost. Our PPTAM protocol is superior in both computation and communication costs. The efficiency improvements are achieved mainly by using random numbers instead of random polynomials as existing techniques for perturbation, without causing successful attacks by polynomial interpolations. We also give detailed constructions on the required zero-knowledge proofs and extend our two protocols to the malicious model, which were previously unknown.
AB - We address the problems of Privacy-Preserving Duplicate Tuple Matching (PPDTM) and Privacy-Preserving Threshold Attributes Matching (PPTAM) in the scenario of a horizontally partitioned database among N parties, where each party holds a private share of the database's tuples and all tuples have the same set of attributes. In PPDTM, each party determines whether its tuples have any duplicate on other parties' private databases. In PPTAM, each party determines whether all attribute values of each tuple appear at least a threshold number of times in the attribute unions. We propose protocols for the two problems using additive homomorphic cryptosystem based on the subgroup membership assumption, e.g., Paillier's and ElGamal's schemes. By analysis on the total numbers of modular exponentiations, modular multiplications and communication bits, with a reduced computation cost which dominates the total cost, by trading off communication cost, our PPDTM protocol for the semihonest model is superior to the solution derivable from existing techniques in total cost. Our PPTAM protocol is superior in both computation and communication costs. The efficiency improvements are achieved mainly by using random numbers instead of random polynomials as existing techniques for perturbation, without causing successful attacks by polynomial interpolations. We also give detailed constructions on the required zero-knowledge proofs and extend our two protocols to the malicious model, which were previously unknown.
KW - Distributed database
KW - Privacy preservation
KW - Secure computation
KW - Zero-knowledge proof
UR - http://www.scopus.com/inward/record.url?scp=70350675296&partnerID=8YFLogxK
U2 - 10.1109/TKDE.2009.39
DO - 10.1109/TKDE.2009.39
M3 - Article
AN - SCOPUS:70350675296
SN - 1041-4347
VL - 21
SP - 1767
EP - 1782
JO - IEEE Transactions on Knowledge and Data Engineering
JF - IEEE Transactions on Knowledge and Data Engineering
IS - 12
M1 - 4770102
ER -