RA-Net: A Deep Learning Approach Based on Residual Structure and Attention Mechanism for Image Copy-Move Forgery Detection

Kaiqi Zhao, Xiaochen Yuan, Zhiyao Xie, Guoheng Huang, Li Feng

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

To reduce the difficulty of image forensics on forgery images, in this paper, we present an efficient end-to-end deep learning approach using Residual Structure and Attention Mechanism (RA-Net) for image copy-move forgery detection (CMFD). The RA-Net can locate the forged areas and corresponding genuine areas, and it is composed of two modules, Residual Feature Extraction module (RFEM) and Feature Matching & Up-sampling module (FMUM). RFEM is designed to extract deep feature maps, which enriches the combination of gradient information and attention mechanism that focuses the attention of RA-Net to the forged areas. The FMUM assists RA-Net is used to detect copy-move forgery areas and return the previous output to the size of the input image for analysis and visualization of the results. Furthermore, we create a RANet-CMFD dataset for the training, the way to generate RA-Net-CMFD dataset could help solve the problem of not having enough dataset in some research areas. Otherwise, comparison results show that our model can achieve satisfied performance on CoMoFoD dataset at the pixel level, and performs superior than the compared methods.

Original languageEnglish
Title of host publicationArtificial Neural Networks and Machine Learning – ICANN 2023 - 32nd International Conference on Artificial Neural Networks, Proceedings
EditorsLazaros Iliadis, Antonios Papaleonidas, Plamen Angelov, Chrisina Jayne
PublisherSpringer Science and Business Media Deutschland GmbH
Pages371-381
Number of pages11
ISBN (Print)9783031442032
DOIs
Publication statusPublished - 2023
Event32nd International Conference on Artificial Neural Networks, ICANN 2023 - Heraklion, Greece
Duration: 26 Sept 202329 Sept 2023

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume14263 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference32nd International Conference on Artificial Neural Networks, ICANN 2023
Country/TerritoryGreece
CityHeraklion
Period26/09/2329/09/23

Keywords

  • Copy-move Forgery Detection
  • Image Forensics
  • Residual Feature Extraction

Fingerprint

Dive into the research topics of 'RA-Net: A Deep Learning Approach Based on Residual Structure and Attention Mechanism for Image Copy-Move Forgery Detection'. Together they form a unique fingerprint.

Cite this