TY - GEN
T1 - Reconstructing Speech from Real-Time Articulatory MRI Using Neural Vocoders
AU - Yu, Yide
AU - Shandiz, Amin Honarmandi
AU - Tóth, László
N1 - Publisher Copyright:
© 2021 European Signal Processing Conference. All rights reserved.
PY - 2021
Y1 - 2021
N2 - Several approaches exist for the recording of articulatory movements, such as eletromagnetic and permanent magnetic articulagraphy, ultrasound tongue imaging and surface electromyography. Although magnetic resonance imaging (MRI) is more costly than the above approaches, the recent developments in this area now allow the recording of real-time MRI videos of the articulators with an acceptable resolution. Here, we experiment with the reconstruction of the speech signal from a real-time MRI recording using deep neural networks. Instead of estimating speech directly, our networks are trained to output a spectral vector, from which we reconstruct the speech signal using the WaveGlow neural vocoder. We compare the performance of three deep neural architectures for the estimation task, combining convolutional (CNN) and recurrence-based (LSTM) neural layers. Besides the mean absolute error (MAE) of our networks, we also evaluate our models by comparing the speech signals obtained using several objective speech quality metrics like the mean cepstral distortion (MCD), Short-Time Objective Intelligibility (STOI), Perceptual Evaluation of Speech Quality (PESQ) and Signal-to-Distortion Ratio (SDR). The results indicate that our approach can successfully reconstruct the gross spectral shape, but more improvements are needed to reproduce the fine spectral details.
AB - Several approaches exist for the recording of articulatory movements, such as eletromagnetic and permanent magnetic articulagraphy, ultrasound tongue imaging and surface electromyography. Although magnetic resonance imaging (MRI) is more costly than the above approaches, the recent developments in this area now allow the recording of real-time MRI videos of the articulators with an acceptable resolution. Here, we experiment with the reconstruction of the speech signal from a real-time MRI recording using deep neural networks. Instead of estimating speech directly, our networks are trained to output a spectral vector, from which we reconstruct the speech signal using the WaveGlow neural vocoder. We compare the performance of three deep neural architectures for the estimation task, combining convolutional (CNN) and recurrence-based (LSTM) neural layers. Besides the mean absolute error (MAE) of our networks, we also evaluate our models by comparing the speech signals obtained using several objective speech quality metrics like the mean cepstral distortion (MCD), Short-Time Objective Intelligibility (STOI), Perceptual Evaluation of Speech Quality (PESQ) and Signal-to-Distortion Ratio (SDR). The results indicate that our approach can successfully reconstruct the gross spectral shape, but more improvements are needed to reproduce the fine spectral details.
KW - Articulatory-to-acoustic mapping
KW - Deep learning
KW - Real-time MRI
UR - http://www.scopus.com/inward/record.url?scp=85123203957&partnerID=8YFLogxK
U2 - 10.23919/EUSIPCO54536.2021.9616153
DO - 10.23919/EUSIPCO54536.2021.9616153
M3 - Conference contribution
AN - SCOPUS:85123203957
T3 - European Signal Processing Conference
SP - 945
EP - 949
BT - 29th European Signal Processing Conference, EUSIPCO 2021 - Proceedings
PB - European Signal Processing Conference, EUSIPCO
T2 - 29th European Signal Processing Conference, EUSIPCO 2021
Y2 - 23 August 2021 through 27 August 2021
ER -