Abstract
基于深度学习方法对心电图(ECG)数据进行心律失常自动分类检测,对于心律失常的早期筛查具有重要的临床价值,但在有限异常样本监督训练下如何有效地提取心律失常特征是目前亟需解决的难题。本文提出一种基于自适应多特征融合网络的心律失常分类算法,从ECG信号中提取RR间期特征,采用一维卷积神经网络(1D-CNN)提取时域深度特征,并以梅尔频率倒谱系数(MFCC)和二维卷积神经网络(2D-CNN)提取频域深度特征,使用自适应权重策略实现特征融合并进行分类。本文使用麻省理工学院和贝斯以色列医院(MIT-BIH)联合开发的心律失常数据库在患者间范式下评估算法。实验结果表明,所提算法的平均精确率、平均召回率和平均F 1分数分别为75.2%、70.1%和71.3%,分类识别准确率高,可为面向可穿戴设备的心律失常分类提供算法支持。.
Original language | English |
---|---|
Pages (from-to) | 49-56 |
Number of pages | 8 |
Journal | Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering |
Volume | 42 |
Issue number | 1 |
DOIs | |
Publication status | Published - 25 Feb 2025 |
Keywords
- Arrhythmia
- Convolutional neural network
- Electrocardiogram classification
- Feature fusion
- Multi-feature