Abstract
Wind power, as a type of renewable energy, has received widespread attention from domestic and foreign experts. Although it has the advantages of cleanliness and low pollution, its strong randomness and volatility can bring disadvantages to the stable operation of the power grid. Accurate power prediction can avoid the adverse effects of wind power, and is of great significance for power grid frequency regulation, peak shaving, and energy improvement. However, traditional wind power prediction methods can only achieve accurate predictions in the short term and perform poorly in medium- to long-term prediction tasks. To address this issue, a power prediction model based on a Gated Transformer is proposed in this paper. Firstly, it can extract features from different types of data sources, effectively capture their correlations, and achieve data fusion. Secondly, gating unit, dilated convolution unit, and multi-head attention mechanism are added to improve the Receptive field and generalization ability of the model. In addition, adding a decoder to guide data prediction further improves the accuracy of prediction. Finally, experiments are carried out with the data collected from typical wind farms. The results show that the proposed Gated Transformer achieves consistent state-of-the-art results in prediction tasks on different time scales.
Original language | English |
---|---|
Article number | 8350 |
Journal | Applied Sciences (Switzerland) |
Volume | 13 |
Issue number | 14 |
DOIs | |
Publication status | Published - Jul 2023 |
Keywords
- NWP
- attention
- gated unit
- power prediction
- transformer
Fingerprint
Dive into the research topics of 'Research on Wind Power Prediction Based on a Gated Transformer'. Together they form a unique fingerprint.Press/Media
-
Faculty of Applied Sciences Researcher Updates Current Data on Applied Sciences (Research on Wind Power Prediction Based on A Gated Transformer)
Yapeng Wang, SIO KEI IM & XU YANG
3/08/23
1 item of Media coverage
Press/Media