TY - GEN
T1 - Semantic-aware dummy selection for location privacy preservation
AU - Chen, Shu
AU - Shen, Hong
N1 - Publisher Copyright:
© 2016 IEEE.
PY - 2016
Y1 - 2016
N2 - With the development of smart devices and mobile positioning technologies, location-based services (LBS) has become more and more popular. While enjoying the convenience and entertainments provided by LBS, users are vulnerable to the increased privacy leakages of locations as another kind of quasiidentifiers. Most existing location privacy preservation algorithms are based on region cloaking which blurs the exact position into a region, and hence prone to inaccuracies of query results. Dummy-based approaches for location privacy preservation proposed recently overcome the above problem, but did not consider the problem of location semantic homogeneity. In this paper, we propose the Dummy Selection on Maximizing Minimum Distance (MaxMinDistDS) and simplified MaxMinDistDS (SimpMaxMinDistDS) that take into account both semantic diversity and physical dispersion of locations. MaxMinDistDS solves this dual-objective optimization problem by a greedy approach of maximizing first semantic diversity and then physical dispersion, and SimpMaxMinDistDS solves a simplified problem of single-objective optimization by uniting the two objectives together in order to improve the efficiency. Besides, we introduce a simplified way of computing location semantic distances by establishing a location semantic tree (LST) based on the hierarchy of locations and transforming the semantic distance into hops between nodes in LST. The efficiency and effectiveness of the proposed algorithms have been validated by a set of carefully designed experiments. The experimental results also show that our algorithms significantly improve the privacy level, compared to other dummy-based solutions.
AB - With the development of smart devices and mobile positioning technologies, location-based services (LBS) has become more and more popular. While enjoying the convenience and entertainments provided by LBS, users are vulnerable to the increased privacy leakages of locations as another kind of quasiidentifiers. Most existing location privacy preservation algorithms are based on region cloaking which blurs the exact position into a region, and hence prone to inaccuracies of query results. Dummy-based approaches for location privacy preservation proposed recently overcome the above problem, but did not consider the problem of location semantic homogeneity. In this paper, we propose the Dummy Selection on Maximizing Minimum Distance (MaxMinDistDS) and simplified MaxMinDistDS (SimpMaxMinDistDS) that take into account both semantic diversity and physical dispersion of locations. MaxMinDistDS solves this dual-objective optimization problem by a greedy approach of maximizing first semantic diversity and then physical dispersion, and SimpMaxMinDistDS solves a simplified problem of single-objective optimization by uniting the two objectives together in order to improve the efficiency. Besides, we introduce a simplified way of computing location semantic distances by establishing a location semantic tree (LST) based on the hierarchy of locations and transforming the semantic distance into hops between nodes in LST. The efficiency and effectiveness of the proposed algorithms have been validated by a set of carefully designed experiments. The experimental results also show that our algorithms significantly improve the privacy level, compared to other dummy-based solutions.
KW - Dummy selection
KW - Location semantic tree
KW - MaxMin distance
KW - Physical dispersion
KW - Semantic diversity
UR - http://www.scopus.com/inward/record.url?scp=85015188555&partnerID=8YFLogxK
U2 - 10.1109/TrustCom.2016.0135
DO - 10.1109/TrustCom.2016.0135
M3 - Conference contribution
AN - SCOPUS:85015188555
T3 - Proceedings - 15th IEEE International Conference on Trust, Security and Privacy in Computing and Communications, 10th IEEE International Conference on Big Data Science and Engineering and 14th IEEE International Symposium on Parallel and Distributed Processing with Applications, IEEE TrustCom/BigDataSE/ISPA 2016
SP - 752
EP - 759
BT - Proceedings - 15th IEEE International Conference on Trust, Security and Privacy in Computing and Communications, 10th IEEE International Conference on Big Data Science and Engineering and 14th IEEE International Symposium on Parallel and Distributed Processing with Applications, IEEE TrustCom/BigDataSE/ISPA 2016
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - Joint 15th IEEE International Conference on Trust, Security and Privacy in Computing and Communications, 10th IEEE International Conference on Big Data Science and Engineering and 14th IEEE International Symposium on Parallel and Distributed Processing with Applications, IEEE TrustCom/BigDataSE/ISPA 2016
Y2 - 23 August 2016 through 26 August 2016
ER -