Structural basis for human DPP4 receptor recognition by a pangolin MERS-like coronavirus

Mo Yang, Zehou Li, Jing Chen, Yang Li, Ran Xu, Meihua Wang, Ying Xu, Rong Chen, Weiwei Ji, Xiaoxia Li, Jiayu Wei, Zhengrong Zhou, Minjie Ren, Ke Ma, Jiayu Guan, Guoxiang Mo, Peng Zhou, Bo Shu, Jingjing Guo, Yuan YuanZheng Li Shi, Shuijun Zhang

Research output: Contribution to journalArticlepeer-review

Abstract

Middle East respiratory syndrome coronavirus (MERS-CoV) and the pangolin MERS-like coronavirus MjHKU4r-CoV-1 employ dipeptidyl peptidase 4 (DPP4) as an entry receptor. MjHKU4r-CoV-1 could infect transgenic mice expressing human DPP4. To understand the mechanism of MjHKU4r-CoV-1 entry into cells, we determined the crystal structures of the receptor binding domain (RBD) of MjHKU4r-CoV-1 spike protein bound to human DPP4 (hDPP4) and Malayan pangolin DPP4 (MjDPP4), respectively. The overall hDPP4-binding mode of MjHKU4r-CoV-1 RBD is similar to that of MERS-CoV RBD. MjHKU4r-CoV-1 RBD shows higher binding affinity to hDPP4 compared to the bat MERS-like coronavirus Ty-BatCoV-HKU4. Via swapping residues between MjHKU4r-CoV-1 RBD and Ty-BatCoV-HKU4 RBD, we identified critical determinants on MjHKU4r-CoV-1 that are responsible for virus usage of hDPP4. Our study suggests that MjHKU4r-CoV-1 is more adapted to the human receptor compared to the bat HKU4 coronavirus and highlights the potential of virus emergence into the human population.

Original languageEnglish
Article numbere1012695
JournalPLoS Pathogens
Volume20
Issue number11
DOIs
Publication statusPublished - Nov 2024

Fingerprint

Dive into the research topics of 'Structural basis for human DPP4 receptor recognition by a pangolin MERS-like coronavirus'. Together they form a unique fingerprint.

Cite this