The lexicographically smallest universal cycle for binary strings with minimum specified weight

Joe Sawada, Aaron Williams, Dennis Wong

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)

Abstract

H. Fredricksen, I.J. Kessler and J. Maiorana discovered a simple but elegant construction of a universal cycle for binary strings of length n: Concatenate the aperiodic prefixes of length n binary necklaces in lexicographic order. We generalize their construction to binary strings of length n whose weights are in the range c,c+1,...,n by simply omitting the necklaces with weight less than c. We also provide an efficient algorithm that generates the universal cycles in constant amortized time per bit using O(n) space. Our universal cycles have the property of being the lexicographically smallest universal cycle for the set of binary strings of length n with weight ≥ c.

Original languageEnglish
Pages (from-to)31-40
Number of pages10
JournalJournal of Discrete Algorithms
Volume28
DOIs
Publication statusPublished - Sept 2014
Externally publishedYes

Keywords

  • De Bruijn cycle
  • FKM algorithm
  • Minimum weight
  • Necklace
  • Universal cycle

Fingerprint

Dive into the research topics of 'The lexicographically smallest universal cycle for binary strings with minimum specified weight'. Together they form a unique fingerprint.

Cite this