@inproceedings{e6218babcc4f4e2894c523cc3d57bbef,
title = "Transferring from ex-vivo to in-vivo: Instrument Localization in 3D Cardiac Ultrasound Using Pyramid-UNet with Hybrid Loss",
abstract = "Automated instrument localization during cardiac interventions is essential to accurately and efficiently interpret a 3D ultrasound (US) image. In this paper, we propose a method to automatically localize the cardiac intervention instrument (RF-ablation catheter or guidewire) in a 3D US volume. We propose a Pyramid-UNet, which exploits the multi-scale information for better segmentation performance. Furthermore, a hybrid loss function is introduced, which consists of contextual loss and class-balanced focal loss, to enhance the performance of the network in cardiac US images. We have collected a challenging ex-vivo dataset to validate our method, which achieves a Dice score of 69.6% being 18.8% higher than the state-of-the-art methods. Moreover, with the pre-trained model on the ex-vivo dataset, our method can be easily adapted to the in-vivo dataset with several iterations and then achieves a Dice score of 65.8% for a different instrument. With segmentation, instruments can be localized with an average error less than 3 voxels in both datasets. To the best of our knowledge, this is the first work to validate the image-based method on in-vivo cardiac datasets.",
keywords = "3D US, Hybrid loss, Instrument localization, Pyramid-UNet",
author = "Hongxu Yang and Caifeng Shan and Tao Tan and Kolen, {Alexander F.} and {de With}, {Peter H.N.}",
note = "Publisher Copyright: {\textcopyright} 2019, Springer Nature Switzerland AG.; 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019 ; Conference date: 13-10-2019 Through 17-10-2019",
year = "2019",
doi = "10.1007/978-3-030-32254-0_30",
language = "English",
isbn = "9783030322533",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer Science and Business Media Deutschland GmbH",
pages = "263--271",
editor = "Dinggang Shen and Pew-Thian Yap and Tianming Liu and Peters, {Terry M.} and Ali Khan and Staib, {Lawrence H.} and Caroline Essert and Sean Zhou",
booktitle = "Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 - 22nd International Conference, Proceedings",
address = "Germany",
}