UniUSNet: A Promptable Framework for Universal Ultrasound Disease Prediction and Tissue Segmentation

Zehui Lin, Zhuoneng Zhang, Xindi Hu, Zhifan Gao, Xin Yang, Yue Sun, Dong Ni, Tao Tan

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Ultrasound is widely used in clinical practice due to its affordability, portability, and safety. However, current AI research often overlooks combined disease prediction and tissue segmentation. We propose UniUSNet, a universal framework for ultrasound image classification and segmentation. This model handles various ultrasound types, anatomical positions, and input formats, excelling in both segmentation and classification tasks. Trained on a comprehensive dataset with over 9.7K annotations from 7 distinct anatomical positions, our model matches state-of-the-art performance and surpasses single-dataset and ablated models. Zero-shot and fine-tuning experiments show strong generalization and adaptability with minimal fine-tuning. We plan to expand our dataset and refine the prompting mechanism, with model weights and code available at (https://github.com/Zehui-Lin/UniUSNet).

Original languageEnglish
Title of host publicationProceedings - 2024 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2024
EditorsMario Cannataro, Huiru Zheng, Lin Gao, Jianlin Cheng, Joao Luis de Miranda, Ester Zumpano, Xiaohua Hu, Young-Rae Cho, Taesung Park
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3501-3504
Number of pages4
ISBN (Electronic)9798350386226
DOIs
Publication statusPublished - 2024
Event2024 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2024 - Lisbon, Portugal
Duration: 3 Dec 20246 Dec 2024

Publication series

NameProceedings - 2024 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2024

Conference

Conference2024 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2024
Country/TerritoryPortugal
CityLisbon
Period3/12/246/12/24

Keywords

  • Promptable Learning
  • Ultrasound
  • Universal Model

Fingerprint

Dive into the research topics of 'UniUSNet: A Promptable Framework for Universal Ultrasound Disease Prediction and Tissue Segmentation'. Together they form a unique fingerprint.

Cite this