TY - JOUR
T1 - Unraveling the mechanism of quercetin alleviating perfluorooctane sulfonate-induced apoptosis in grass carp (Ctenopharyngodon idellus) hepatocytes
T2 - AMPK/mTOR-mediated mitophagy
AU - Luo, Dongliu
AU - Chen, Shasha
AU - Wang, Xixi
AU - Wang, Yixuan
AU - Khoso, Pervez Ahmed
AU - Xu, Shiwen
AU - Li, Shu
N1 - Publisher Copyright:
© 2023
PY - 2023/12
Y1 - 2023/12
N2 - Exposure to persistent new organic pollutants in the environment often leads to high mortality and causes serious economic losses to the aquaculture industry. Currently, perfluorooctane sulfonate (PFOS) is persistent and bio-accumulative in the environment, causing potential risks to aquatic ecosystems, but its toxicity mechanism to aquatic organisms is still unclear. As a natural flavonoid compound, quercetin (QU) has many biological activities such as anti-oxidation, anti-inflammatory, anti-apoptosis and immune regulation. Whether it can be used as a candidate medicine to alleviate PFOS toxicity needs to be further explored. Therefore, in this study, we treated (Ctenopharyngodon idellus) grass carp hepatocytes (L8824) with PFOS (200 μM) and/or QU (60 μM) for 24 h. The results showed that PFOS significantly increased the release of LDH and active oxygen (ROS) in L8824 cells, and led to the decrease of mitochondrial membrane potential (ΔΨm) and ATP content, the increase of mitochondrial ROS, the disorder of mitochondrial dynamics, and the initiation of Bcl-2/Bax-mediated apoptosis. Surprisingly, QU can alleviate the above PFOS-induced grass carp hepatocyte toxicity. In addition, in order to further explore the protective mechanism of QU, we used the molecular docking to predict the binding site between QU and AMPK, and found that there was a high binding capacity between QU and AMPK. In addition, we used Compound C (CC) and 3-Methyladenine (3-MA) to intervene. The results showed that CC and 3-MA intervention aggravated mitochondrial dysfunction and apoptosis factor expression in the QU+PFOS group. These data indicate that PFOS induces oxidative stress, mitochondrial dysfunction, and apoptosis. The regulation of AMPK/mTOR mediated mitophagy by QU may be a new therapeutic strategy to alleviate the hepatotoxicity of PFOS grass carp. This study provides theoretical basis and reference for exploring the toxic mechanism and biological toxic effects of PFOS, and provides a scheme for improving the economic benefits of aquaculture.
AB - Exposure to persistent new organic pollutants in the environment often leads to high mortality and causes serious economic losses to the aquaculture industry. Currently, perfluorooctane sulfonate (PFOS) is persistent and bio-accumulative in the environment, causing potential risks to aquatic ecosystems, but its toxicity mechanism to aquatic organisms is still unclear. As a natural flavonoid compound, quercetin (QU) has many biological activities such as anti-oxidation, anti-inflammatory, anti-apoptosis and immune regulation. Whether it can be used as a candidate medicine to alleviate PFOS toxicity needs to be further explored. Therefore, in this study, we treated (Ctenopharyngodon idellus) grass carp hepatocytes (L8824) with PFOS (200 μM) and/or QU (60 μM) for 24 h. The results showed that PFOS significantly increased the release of LDH and active oxygen (ROS) in L8824 cells, and led to the decrease of mitochondrial membrane potential (ΔΨm) and ATP content, the increase of mitochondrial ROS, the disorder of mitochondrial dynamics, and the initiation of Bcl-2/Bax-mediated apoptosis. Surprisingly, QU can alleviate the above PFOS-induced grass carp hepatocyte toxicity. In addition, in order to further explore the protective mechanism of QU, we used the molecular docking to predict the binding site between QU and AMPK, and found that there was a high binding capacity between QU and AMPK. In addition, we used Compound C (CC) and 3-Methyladenine (3-MA) to intervene. The results showed that CC and 3-MA intervention aggravated mitochondrial dysfunction and apoptosis factor expression in the QU+PFOS group. These data indicate that PFOS induces oxidative stress, mitochondrial dysfunction, and apoptosis. The regulation of AMPK/mTOR mediated mitophagy by QU may be a new therapeutic strategy to alleviate the hepatotoxicity of PFOS grass carp. This study provides theoretical basis and reference for exploring the toxic mechanism and biological toxic effects of PFOS, and provides a scheme for improving the economic benefits of aquaculture.
KW - AMPK/mTOR
KW - Apoptosis
KW - Grass carp hepatocytes
KW - Mitophagy
KW - Perfluorooctane sulfonate
KW - Quercetin
UR - http://www.scopus.com/inward/record.url?scp=85177178597&partnerID=8YFLogxK
U2 - 10.1016/j.aquatox.2023.106769
DO - 10.1016/j.aquatox.2023.106769
M3 - Article
AN - SCOPUS:85177178597
SN - 0166-445X
VL - 265
JO - Aquatic Toxicology
JF - Aquatic Toxicology
M1 - 106769
ER -