跳至主導覽
跳至搜尋
跳過主要內容
澳門理工大學 首頁
English
中文
首頁
研究單位
研究成果
學術履歷
新聞/媒體
按專業知識、姓名或所屬機構搜尋
連絡專家
查看斯高帕斯 (Scopus) 概要
謝 丹嬋
Professor
Professor
,
Faculty of Applied Sciences
電話
8599 3280
電子郵件
ritatse
mpu.edu
mo
h-index
507
引文
13
h-指數
按照存儲在普爾(Pure)的出版物數量及斯高帕斯(Scopus)引文計算。
2012
2024
每年研究成果
概覽
指紋
網路
研究成果
(68)
新聞/媒體
(8)
類似的個人檔案
(6)
指紋
查看啟用 TAN SIM TSE 的研究主題。這些主題標籤來自此人的作品。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Computer Science
Deep Learning Method
100%
Convolutional Neural Network
72%
Machine Learning
67%
Social Network
61%
Internet-Of-Things
57%
Few-Shot Learning
57%
Learning System
56%
Online Social Networks
43%
Machine Translation
43%
Air Pollution
43%
Baseline Method
39%
Smart City
38%
Case Study
34%
Long Short-Term Memory Network
33%
Machine Learning Algorithm
31%
Translation System
31%
Edge Server
28%
Malware
28%
Recurrent Neural Network
25%
Learning Approach
25%
Weather Condition
24%
Machine Learning Technology
23%
Attention (Machine Learning)
23%
Deep Learning Model
22%
Sensor Networks
21%
Frequency Domain
21%
Image Processing
21%
Representation Learning
21%
Data Mining Technique
19%
Collected Data
19%
Bidirectional Long Short-Term Memory Network
18%
Autonomous Driving
18%
Robot
17%
Ensemble Method
17%
Deep Reinforcement Learning
14%
Data Mining
14%
Teaching and Learning
14%
Network Application
14%
On-Line Education
14%
Synthetic Data
14%
Parallel Corpus
14%
Positive Effect
14%
Consortium Blockchain
14%
Transfer Learning
14%
Environmental Data
14%
Speed-up
14%
Training Phase
14%
Decision Support System
14%
Analysed Data
14%
Smartphone Application
14%
Engineering
Deep Learning Method
57%
State of Health
44%
Convolutional Neural Network
43%
Electric Vehicle
38%
Learning System
37%
State of Charge
33%
Battery Electric Vehicle
32%
Lithium-Ion Batteries
30%
Lithium Ion Battery
28%
Machine Learning Algorithm
28%
Internet-Of-Things
28%
Robot
18%
Reinforcement Learning
18%
Learning Approach
18%
Network System
14%
Bridging
14%
Distance Estimation
14%
Point Cloud
14%
Adaptive Sensing
14%
Historic Building
14%
Ideal Solution
14%
Complex Model
14%
Physical Method
14%
Gaussians
14%
Data-Mining Technique
14%
Frequency Domain
14%
Practical Significance
14%
Sensor Node
14%
Wireless Sensor Network
14%
Hybrid Model
14%
Air Pollution
14%
Nonlinearity
14%
Nissan Leaf
12%
Particular Matter 2.5
9%
Sensor Device
9%
Frequency Representation
9%
Learning Technique
9%
Spatial Domain
9%
Sensor Data
8%
Battery Management System
8%
Battery Pack
7%
Statistical Data
7%
Recognition Accuracy
7%
Smart City
7%
Target Object
5%