A Local Rotation Transformation Model for Vehicle Re-Identification

Yanbing Chen, Wei Ke, Hao Sheng, Zhang Xiong

研究成果: Conference contribution同行評審

摘要

The vehicle re-identification (V-ReID) task is critical in urban surveillance and can be used for a variety of purposes. We propose a novel augmentation method to improve the V-ReID performance. Our deep learning framework mainly consists of a local rotation transformation and a target selection module. In particular, we begin by using a random selection method to locate a local region of interest in an image sample. Then, a parameter generator network is in charge of generating parameters for further image rotation transformation. Finally, a target selection module is used to retrieve the augmented image sample and update the parameter generator network. Our method is effective on VeRi-776 and VehicleID datasets, it shows that we achieve considerable competitive results with the current state-of-the-art.

原文English
主出版物標題Wireless Algorithms, Systems, and Applications - 17th International Conference, WASA 2022, Proceedings
編輯Lei Wang, Michael Segal, Jenhui Chen, Tie Qiu
發行者Springer Science and Business Media Deutschland GmbH
頁面76-87
頁數12
ISBN(列印)9783031192074
DOIs
出版狀態Published - 2022
事件17th International Conference on Wireless Algorithms, Systems, and Applications, WASA 2022 - Dalian, China
持續時間: 24 11月 202226 11月 2022

出版系列

名字Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
13471 LNCS
ISSN(列印)0302-9743
ISSN(電子)1611-3349

Conference

Conference17th International Conference on Wireless Algorithms, Systems, and Applications, WASA 2022
國家/地區China
城市Dalian
期間24/11/2226/11/22

指紋

深入研究「A Local Rotation Transformation Model for Vehicle Re-Identification」主題。共同形成了獨特的指紋。

引用此