A PARAMETERIZED GENERATIVE ADVERSARIAL NETWORK USING CYCLIC PROJECTION FOR EXPLAINABLE MEDICAL IMAGE CLASSIFICATIONS

Xiangyu Xiong, Yue Sun, Xiaohong Liu, Chan Tong Lam, Tong Tong, Hao Chen, Qinquan Gao, Wei Ke, Tao Tan

研究成果: Conference contribution同行評審

2 引文 斯高帕斯(Scopus)

摘要

Although current data augmentation methods are successful to alleviate the data insufficiency, conventional augmentation are primarily intra-domain while advanced generative adversarial networks (GANs) generate images remaining uncertain, particularly in small-scale datasets. In this paper, we propose a parameterized GAN (ParaGAN) that effectively controls the changes of synthetic samples among domains and highlights the attention regions for downstream classification. Specifically, ParaGAN incorporates projection distance parameters in cyclic projection and projects the source images to the decision boundary to obtain the class-difference maps. Our experiments show that ParaGAN can consistently outperform the existing augmentation methods with explainable classification on two small-scale medical datasets.

原文English
主出版物標題2024 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024 - Proceedings
發行者Institute of Electrical and Electronics Engineers Inc.
頁面7310-7314
頁數5
ISBN(電子)9798350344851
DOIs
出版狀態Published - 2024
事件49th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024 - Seoul, Korea, Republic of
持續時間: 14 4月 202419 4月 2024

出版系列

名字ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISSN(列印)1520-6149

Conference

Conference49th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024
國家/地區Korea, Republic of
城市Seoul
期間14/04/2419/04/24

指紋

深入研究「A PARAMETERIZED GENERATIVE ADVERSARIAL NETWORK USING CYCLIC PROJECTION FOR EXPLAINABLE MEDICAL IMAGE CLASSIFICATIONS」主題。共同形成了獨特的指紋。

引用此