A privacy-preserving data publishing method for multiple numerical sensitive attributes via clustering and multi-sensitive bucketization

Qinghai Liu, Hong Shen, Yingpeng Sang

研究成果: Conference contribution同行評審

15 引文 斯高帕斯(Scopus)

摘要

Anonymized data publication has received considerable attention from the research community in recent years. For numerical sensitive attributes, most of the existing privacy preserving data publishing techniques concentrate on microdata with multiple categorical sensitive attributes or only one numerical sensitive attribute. However, many real-world applications may contain multiple numerical sensitive attributes. Directly applying the existing single-numerical-sensitive-attribute and multiplecategorical- sensitive-attributes privacy preserving techniques often causes unexpected private information disclosure. They are particularly prone to the proximity breach, a privacy threat specific to numerical sensitive attributes in data publication. In this paper we propose a privacy-preserving data publishing method, namely MNSACM, that uses the ideas of clustering and Multi-Sensitive Bucketization (MSB) to publish microdata with multiple numerical sensitive attributes. Through an example we show the effectiveness of this method in privacy protection to multiple numerical sensitive attributes.

原文English
主出版物標題Proceedings - 6th International Symposium on Parallel Architectures, Algorithms, and Programming, PAAP 2014
編輯Hong Shen, Hong Shen, Yingpeng Sang, Hui Tian
發行者IEEE Computer Society
頁面220-223
頁數4
ISBN(電子)9781479938445
DOIs
出版狀態Published - 3 10月 2014
對外發佈
事件6th International Symposium on Parallel Architectures, Algorithms, and Programming, PAAP 2014 - Beijing, China
持續時間: 13 7月 201415 7月 2014

出版系列

名字Proceedings - International Symposium on Parallel Architectures, Algorithms and Programming, PAAP
ISSN(列印)2168-3034
ISSN(電子)2168-3042

Conference

Conference6th International Symposium on Parallel Architectures, Algorithms, and Programming, PAAP 2014
國家/地區China
城市Beijing
期間13/07/1415/07/14

指紋

深入研究「A privacy-preserving data publishing method for multiple numerical sensitive attributes via clustering and multi-sensitive bucketization」主題。共同形成了獨特的指紋。

引用此