TY - GEN
T1 - Accurate Facial Landmark Detector via Multi-scale Transformer
AU - Sha, Yuyang
AU - Meng, Weiyu
AU - Zhai, Xiaobing
AU - Xie, Can
AU - Li, Kefeng
N1 - Publisher Copyright:
© 2024, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
PY - 2024
Y1 - 2024
N2 - Facial landmark detection is an essential prerequisite for many face applications, which has attracted much attention and made remarkable progress in recent years. However, some problems still need to be solved urgently, including improving the accuracy of facial landmark detectors in complex scenes, encoding long-range relationships between keypoints and facial components, and optimizing the robustness of methods in unconstrained environments. To address these problems, we propose a novel facial landmark detector via multi-scale transformer (MTLD), which contains three modules: Multi-scale Transformer, Joint Regression, and Structure Loss. The proposed Multi-scale Transformer focuses on capturing long-range information and cross-scale representations from multi-scale feature maps. The Joint Regression takes advantage of both coordinate and heatmap regression, which could boost the inference speed without sacrificing model accuracy. Furthermore, in order to explore the structural dependency between facial landmarks, we design the Structure Loss to fully utilize the geometric information in face images. We evaluate the proposed method through extensive experiments on four benchmark datasets. The results demonstrate that our method outperforms state-of-the-art approaches both in accuracy and efficiency.
AB - Facial landmark detection is an essential prerequisite for many face applications, which has attracted much attention and made remarkable progress in recent years. However, some problems still need to be solved urgently, including improving the accuracy of facial landmark detectors in complex scenes, encoding long-range relationships between keypoints and facial components, and optimizing the robustness of methods in unconstrained environments. To address these problems, we propose a novel facial landmark detector via multi-scale transformer (MTLD), which contains three modules: Multi-scale Transformer, Joint Regression, and Structure Loss. The proposed Multi-scale Transformer focuses on capturing long-range information and cross-scale representations from multi-scale feature maps. The Joint Regression takes advantage of both coordinate and heatmap regression, which could boost the inference speed without sacrificing model accuracy. Furthermore, in order to explore the structural dependency between facial landmarks, we design the Structure Loss to fully utilize the geometric information in face images. We evaluate the proposed method through extensive experiments on four benchmark datasets. The results demonstrate that our method outperforms state-of-the-art approaches both in accuracy and efficiency.
KW - Facial landmark detection
KW - Global information
KW - Multi-scale feature
KW - Vision transformer
UR - http://www.scopus.com/inward/record.url?scp=85180770918&partnerID=8YFLogxK
U2 - 10.1007/978-981-99-8469-5_22
DO - 10.1007/978-981-99-8469-5_22
M3 - Conference contribution
AN - SCOPUS:85180770918
SN - 9789819984688
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 278
EP - 290
BT - Pattern Recognition and Computer Vision - 6th Chinese Conference, PRCV 2023, Proceedings
A2 - Liu, Qingshan
A2 - Wang, Hanzi
A2 - Ji, Rongrong
A2 - Ma, Zhanyu
A2 - Zheng, Weishi
A2 - Zha, Hongbin
A2 - Chen, Xilin
A2 - Wang, Liang
PB - Springer Science and Business Media Deutschland GmbH
T2 - 6th Chinese Conference on Pattern Recognition and Computer Vision, PRCV 2023
Y2 - 13 October 2023 through 15 October 2023
ER -