An eight-approximation algorithm for computing rooted three-vertex connected minimum steiner networks

Hong Shen, Longkun Guo

研究成果: Article同行評審

摘要

For a given undirected (edge) weighted graph (G=(V,E)), a terminal set (S ⊂ V) and a root (r ∈ S), the rooted (k)-vertex connected minimum Steiner network (kVSMNr) problem requires to construct a minimum-cost subgraph of (G) such that each terminal in S\{r} is (k)-vertex connected to (r). As an important problem in survivable network design, the (kVSMN r) problem is known to be NP-hard even when (k=1). For (k=3) this paper presents a simple combinatorial eight-approximation algorithm, improving the known best ratio 14 of Nutov. Our algorithm constructs an approximate (3VSMNr) through augmenting a two-vertex connected counterpart with additional edges of bounded cost to the optimal. We prove that the total cost of the added edges is at most six times of the optimal by showing that the edges in a (3VSMNr) compose a subgraph containing our solution in such a way that each edge appears in the subgraph at most six times.

原文English
文章編號6235951
頁(從 - 到)1684-1693
頁數10
期刊IEEE Transactions on Computers
62
發行號9
DOIs
出版狀態Published - 2013
對外發佈

指紋

深入研究「An eight-approximation algorithm for computing rooted three-vertex connected minimum steiner networks」主題。共同形成了獨特的指紋。

引用此