ARGA-Unet: Advanced U-net segmentation model using residual grouped convolution and attention mechanism for brain tumor MRI image segmentation

Siyi XUN, Yan ZHANG, Sixu DUAN, Mingwei WANG, Jiangang CHEN, Tong TONG, Qinquan GAO, Chantong LAM, Menghan HU, Tao TAN

研究成果: Article同行評審

3 引文 斯高帕斯(Scopus)

摘要

Background: Magnetic resonance imaging (MRI) has played an important role in the rapid growth of medical imaging diagnostic technology, especially in the diagnosis and treatment of brain tumors owing to its non-invasive characteristics and superior soft tissue contrast. However, brain tumors are characterized by high non-uniformity and non-obvious boundaries in MRI images because of their invasive and highly heterogeneous nature. In addition, the labeling of tumor areas is time-consuming and laborious. Methods: To address these issues, this study uses a residual grouped convolution module, convolutional block attention module, and bilinear interpolation upsampling method to improve the classical segmentation network U-net. The influence of network normalization, loss function, and network depth on segmentation performance is further considered. Results: In the experiments, the Dice score of the proposed segmentation model reached 97.581%, which is 12.438% higher than that of traditional U-net, demonstrating the effective segmentation of MRI brain tumor images. Conclusions: In conclusion, we use the improved U-net network to achieve a good segmentation effect of brain tumor MRI images.

原文English
頁(從 - 到)203-216
頁數14
期刊Virtual Reality and Intelligent Hardware
6
發行號3
DOIs
出版狀態Published - 6月 2024

指紋

深入研究「ARGA-Unet: Advanced U-net segmentation model using residual grouped convolution and attention mechanism for brain tumor MRI image segmentation」主題。共同形成了獨特的指紋。

引用此