Bridging the Gap: Enhancing Storm Surge Prediction and Decision Support with Bidirectional Attention-Based LSTM

Vai Kei Ian, Rita Tse, Su Kit Tang, Giovanni Pau

研究成果: Article同行評審

10 引文 斯高帕斯(Scopus)

摘要

Accurate storm surge forecasting is vital for saving lives and avoiding economic and infrastructural damage. Failure to accurately predict storm surge can have catastrophic repercussions. Advances in machine learning models show the ability to improve accuracy of storm surge prediction by leveraging vast amounts of historical and realtime data such as weather and tide patterns. This paper proposes a bidirectional attention-based LSTM storm surge architecture (BALSSA) to improve prediction accuracy. Training and evaluation utilized extensive meteorological and tide level data from 77 typhoon incidents in Hong Kong and Macao between 2017 and 2022. The proposed methodology is able to model complex non-linearities between large amounts of data from different sources and identify complex relationships between variables that are typically not captured by traditional physical methods. BALSSA effectively resolves the problem of long-term dependencies in storm surge prediction by the incorporation of an attention mechanism. It enables selective emphasis on significant features and boosts the prediction accuracy. Evaluation has been conducted using real-world datasets from Macao to validate our storm surge prediction model. Results show that accuracy and robustness of predictions were significantly improved by the incorporation of attention mechanisms in our models. BALSSA captures temporal dynamics effectively, providing highly accurate storm surge forecasts (MAE: 0.0126, RMSE: 0.0003) up to 72 h in advance. These findings have practical significance for disaster risk reduction strategies, saving lives through timely evacuation and early warnings. Experiments comparing BALSSA variations with other machine learning algorithms consistently validate BALSSA’s superior predictive performance. It offers an additional risk management tool for civil-protection agencies and governments, as well as an ideal solution for enhancing storm surge prediction accuracy, benefiting coastal communities.

原文English
文章編號1082
期刊Atmosphere
14
發行號7
DOIs
出版狀態Published - 7月 2023

指紋

深入研究「Bridging the Gap: Enhancing Storm Surge Prediction and Decision Support with Bidirectional Attention-Based LSTM」主題。共同形成了獨特的指紋。

引用此