TY - GEN
T1 - Finding time period-based most frequent path in big trajectory data
AU - Luo, Wuman
AU - Tan, Haoyu
AU - Chen, Lei
AU - Ni, Lionel M.
PY - 2013
Y1 - 2013
N2 - The rise of GPS-equipped mobile devices has led to the emergence of big trajectory data. In this paper, we study a new path finding query which finds the most frequent path (MFP) during user-specified time periods in large-scale historical trajectory data. We refer to this query as time period-based MFP (TPMFP). Specifically, given a time period T, a source vs and a destination vd, TPMFP searches the MFP from vs to v d during T. Though there exist several proposals on defining MFP, they only consider a fixed time period. Most importantly, we find that none of them can well reflect people's common sense notion which can be described by three key properties, namely suffix-optimal (i.e., any suffix of an MFP is also an MFP), length-insensitive (i.e., MFP should not favor shorter or longer paths), and bottleneck-free (i.e., MFP should not contain infrequent edges). The TPMFP with the above properties will reveal not only common routing preferences of the past travelers, but also take the time effectiveness into consideration. Therefore, our first task is to give a TPMFP definition that satisfies the above three properties. Then, given the comprehensive TPMFP definition, our next task is to find TPMFP over huge amount of trajectory data efficiently. Particularly, we propose efficient search algorithms together with novel indexes to speed up the processing of TPMFP. To demonstrate both the effectiveness and the efficiency of our approach, we conduct extensive experiments using a real dataset containing over 11 million trajectories.
AB - The rise of GPS-equipped mobile devices has led to the emergence of big trajectory data. In this paper, we study a new path finding query which finds the most frequent path (MFP) during user-specified time periods in large-scale historical trajectory data. We refer to this query as time period-based MFP (TPMFP). Specifically, given a time period T, a source vs and a destination vd, TPMFP searches the MFP from vs to v d during T. Though there exist several proposals on defining MFP, they only consider a fixed time period. Most importantly, we find that none of them can well reflect people's common sense notion which can be described by three key properties, namely suffix-optimal (i.e., any suffix of an MFP is also an MFP), length-insensitive (i.e., MFP should not favor shorter or longer paths), and bottleneck-free (i.e., MFP should not contain infrequent edges). The TPMFP with the above properties will reveal not only common routing preferences of the past travelers, but also take the time effectiveness into consideration. Therefore, our first task is to give a TPMFP definition that satisfies the above three properties. Then, given the comprehensive TPMFP definition, our next task is to find TPMFP over huge amount of trajectory data efficiently. Particularly, we propose efficient search algorithms together with novel indexes to speed up the processing of TPMFP. To demonstrate both the effectiveness and the efficiency of our approach, we conduct extensive experiments using a real dataset containing over 11 million trajectories.
KW - Big trajectory data
KW - Path finding
UR - http://www.scopus.com/inward/record.url?scp=84880562062&partnerID=8YFLogxK
U2 - 10.1145/2463676.2465287
DO - 10.1145/2463676.2465287
M3 - Conference contribution
AN - SCOPUS:84880562062
SN - 9781450320375
T3 - Proceedings of the ACM SIGMOD International Conference on Management of Data
SP - 713
EP - 724
BT - SIGMOD 2013 - International Conference on Management of Data
T2 - 2013 ACM SIGMOD Conference on Management of Data, SIGMOD 2013
Y2 - 22 June 2013 through 27 June 2013
ER -