Forecasting the Temperature of BEV Battery Pack Based on Field Testing Data

Ka Seng Chou, Kei Long Wong, Davide Aguiari, Rita Tse, Su Kit Tang, Giovanni Pau

研究成果: Conference contribution同行評審

摘要

Monitoring electric vehicles’ battery situation and indicating the state of health is still challenging. Temperature is one of the critical factors determining battery degradation over time. We have collected more than 2.3 million discharging samples via a custom Internet of Thing device for more than one year to build a machine-learning model that can forecast the battery pack’s average temperature in real-world driving. Our best Bi-LSTM model achieved the mean absolute error of 2.92 C on test data and 1.7 C on cross-validation for prediction of 10 min on the battery pack’s temperature.

原文English
主出版物標題Edge Computing and IoT
主出版物子標題Systems, Management and Security - 3rd EAI International Conference, ICECI 2022, Proceedings
編輯Zhu Xiao, Xingxia Dai, Jinmei Shu, Ping Zhao
發行者Springer Science and Business Media Deutschland GmbH
頁面3-17
頁數15
ISBN(列印)9783031289897
DOIs
出版狀態Published - 2023
事件3rd EAI International Conference on Edge Computing and IoT, EAI ICECI 2022 - Virtual, Online
持續時間: 13 12月 202214 12月 2022

出版系列

名字Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST
478 LNICST
ISSN(列印)1867-8211
ISSN(電子)1867-822X

Conference

Conference3rd EAI International Conference on Edge Computing and IoT, EAI ICECI 2022
城市Virtual, Online
期間13/12/2214/12/22

指紋

深入研究「Forecasting the Temperature of BEV Battery Pack Based on Field Testing Data」主題。共同形成了獨特的指紋。

引用此