HighFold: accurately predicting structures of cyclic peptides and complexes with head-to-tail and disulfide bridge constraints

Chenhao Zhang, Chengyun Zhang, Tianfeng Shang, Ning Zhu, Xinyi Wu, Hongliang Duan

研究成果: Article同行評審

摘要

In recent years, cyclic peptides have emerged as a promising therapeutic modality due to their diverse biological activities. Understanding the structures of these cyclic peptides and their complexes is crucial for unlocking invaluable insights about protein target-cyclic peptide interaction, which can facilitate the development of novel-related drugs. However, conducting experimental observations is time-consuming and expensive. Computer-aided drug design methods are not practical enough in real-world applications. To tackles this challenge, we introduce HighFold, an AlphaFold-derived model in this study. By integrating specific details about the head-to-tail circle and disulfide bridge structures, the HighFold model can accurately predict the structures of cyclic peptides and their complexes. Our model demonstrates superior predictive performance compared to other existing approaches, representing a significant advancement in structure-activity research.

原文English
文章編號bbae215
期刊Briefings in Bioinformatics
25
發行號3
DOIs
出版狀態Published - 1 5月 2024

指紋

深入研究「HighFold: accurately predicting structures of cyclic peptides and complexes with head-to-tail and disulfide bridge constraints」主題。共同形成了獨特的指紋。

引用此