IMDRSN-BiLSTM for Rolling Bearing Fault Diagnosis

Yuan Xu, Heng Wei Liao, Wei Ke, Yan Lin He, Qun Xiong Zhu, Yang Zhang, Ming Qing Zhang

研究成果: Conference contribution同行評審

摘要

To tackle the problem of decreased accuracy of deep residual shrinkage networks (DRSN) in the presence of strong noise, this paper proposes an improved multi-scale deep residual shrinkage network (IMDRSN) combined with bidirectional long short-term memory (BiLSTM) for rolling bearing fault diagnosis. Firstly, raw fault data is transformed into time-frequency images, and the Xception module captures multi-scale information in the images. Secondly, multiple scales of residual shrinkage building units (RSBU) are used to denoise the captured image information. Thirdly, introduce a Xception module into each RSBU to enhance the model’s information retrieval capabilities. Incorporate a convolutional block attention module (CBAM) into each RSBU to strengthen the model’s focus on key features, and introduce an adaptive module to reduce the constant bias impact of soft thresholding between input and output. Finally, the BiLSTM module is employed to capture the dependencies within the time series data, and to perform the task of fault classification. The IMDRSN-BiLSTM model is applied to the rolling bearing fault diagnosis task on the case western reserve university (CWRU) dataset in noisy environments, and experimental outcomes demonstrate that the IMDRSN-BiLSTM model delivers higher precision and robustness in identifying bearing malfunctions.

原文English
主出版物標題Computational Intelligence and Industrial Applications - 11th International Symposium, ISCIIA 2024, Proceedings
編輯Bin Xin, Hongbin Ma, Jinhua She, Weihua Cao
發行者Springer Science and Business Media Deutschland GmbH
頁面68-80
頁數13
ISBN(列印)9789819647521
DOIs
出版狀態Published - 2025
事件11th International Symposium on Computational Intelligence and Industrial Applications, ISCIIA 2024 - Beijing, China
持續時間: 1 11月 20245 11月 2024

出版系列

名字Communications in Computer and Information Science
2465 CCIS
ISSN(列印)1865-0929
ISSN(電子)1865-0937

Conference

Conference11th International Symposium on Computational Intelligence and Industrial Applications, ISCIIA 2024
國家/地區China
城市Beijing
期間1/11/245/11/24

指紋

深入研究「IMDRSN-BiLSTM for Rolling Bearing Fault Diagnosis」主題。共同形成了獨特的指紋。

引用此