IvyGPT: InteractiVe Chinese Pathway Language Model in Medical Domain

Rongsheng Wang, Yaofei Duan, Chan Tong Lam, Jiexin Chen, Jiangsheng Xu, Haoming Chen, Xiaohong Liu, Patrick Cheong Iao Pang, Tao Tan

研究成果: Conference contribution同行評審

2 引文 斯高帕斯(Scopus)

摘要

General large language models (LLMs) such as ChatGPT have shown remarkable success. However, such LLMs have not been widely adopted for medical purposes, due to poor accuracy and inability to provide medical advice. We propose IvyGPT, an LLM based on LLaMA that is trained and fine-tuned with high-quality medical question-answer (QA) instances and Reinforcement Learning from Human Feedback (RLHF). In the training, we used QLoRA to handle 33 billion parameters on a small number of NVIDIA A100 (80 GB) GPUs. Experimental results show that IvyGPT has outperformed other medical GPT models. The online demo is available at http://81.71.71.157:52022. Our demo video can be found at https://youtu.be/O4D74pQh8Is.

原文English
主出版物標題Artificial Intelligence - Third CAAI International Conference, CICAI 2023, Revised Selected Papers
編輯Lu Fang, Jian Pei, Guangtao Zhai, Ruiping Wang
發行者Springer Science and Business Media Deutschland GmbH
頁面378-382
頁數5
ISBN(列印)9789819991181
DOIs
出版狀態Published - 2024
事件3rd CAAI International Conference on Artificial Intelligence, CICAI 2023 - Fuzhou, China
持續時間: 22 7月 202323 7月 2023

出版系列

名字Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
14474 LNAI
ISSN(列印)0302-9743
ISSN(電子)1611-3349

Conference

Conference3rd CAAI International Conference on Artificial Intelligence, CICAI 2023
國家/地區China
城市Fuzhou
期間22/07/2323/07/23

指紋

深入研究「IvyGPT: InteractiVe Chinese Pathway Language Model in Medical Domain」主題。共同形成了獨特的指紋。

引用此